
Bogus Quantum Algorithms

Sam Jaques

May 20, 2023

Studying quantum algorithms I have come up with ideas that made me think “Wait, doesn’t this break
everything?”. And then of course it turns out there is some subtle flaw to my idea.

I thought I’d share these as a teaching tool. Just as debugging a classical program can really teach you
about the computer, so quantum “debugging” should hopefully teach about quantum algorithms.

If you have your own bogus algorithm, please send it to me and I’ll attribute you and add it to the list!

1 Grover With a Simple Oracle

Grover’s algorithm is provably optimal in query complexity. But what function do we need to query? That
is, why can’t I initialize a superposition of inputs and call the oracle to get the state:

1√
n

n∑
x=0

|x〉 |f(x)〉 (1)

and then make an extra bit b(x) representing whether f(x) was the “right” value:

1√
n

n∑
x=0

|x〉 |f(x)〉 |b(x)〉 (2)

the uncompute f(x):

1√
n

n∑
x=0

|x〉 |0〉 |b(x)〉 (3)

and then for my “oracle” I just check the bit b(x). So sure, I’ll have to check that bit O(
√
n) times, but

I’ve saved all my actual oracle computations.

2 Bit-by-Bit Grover

Suppose we are looking for a unique bitstring a = a1 · · · an among all n-bit strings, defined such that
f(a) = 0 and f(b) = 1 for all b 6= 0, for an easily computable function f . The idea is to search one bit at
a time. We need the following routine, that searches for a single bit.

First, prepare a uniform superposition of 2 qubits: |00〉+ |10〉+ |01〉+ |11〉. Then, apply the oracle to
the “and” of the output and apply it to a phase gate (that is: if 1 is the right bit, only |11〉 will get its

1

phase flipped, and if 0 is the right bit, only |00〉). Then apply a Hadamard to each qubit. The resulting
state will be either: {

|00〉+ |11〉 , f(0) = 1

|10〉 − |01〉 , f(1) = 1
(4)

So: Apply a CNOT from the first to the second qubit, then a Hadamard to the first qubit, to get |0〉 |0〉 for
f(0) = 1 and− |1〉 |1〉 for f(1) = 1. Apply a CNOT from the second back to the first, and a controlled-phase
from the second, and get |00〉 vs. |01〉. Discard the first register, keep the second.

If neither one is successful (i.e., f(0) = f(1) = 0, then there will be no phase flips, and you will get
|+0〉 as a final state. However: We can then save f(x), for the value x in the second qubit, into an ancilla
qubit, then use that to control a Hadamard on the first qubit. Thus we get |00〉 if f(0) = f(1) = 0, and
still what we want otherwise.

Thus: Suppose we have a state of the form

1

2j/2

2j∑
~bj=0

|b1b2 · · · bj〉 |ψn−j(b1 · · · bj)〉 (5)

where |ψn−j(b1 · · · bj)〉 is 0 if a1 · · · aj 6= b1 · · · bj, and otherwise, ψn−j(b1 · · · bj) = aj+1 · · · an.
We can decompose this into two states:

1

2(j−1)/2

∑
~bj−1 6=~aj−1

|b1 · · · bj−1〉 1√
2
(|0〉+ |1〉) +

1

2(j−1)/2 |~aj−1〉
1√
2
(|aj−1〉 |0〉+ |aj−1〉 |aj+1 · · · an〉). (6)

and introduce an extra superposition next to bj:

1

2(j−1)/2

∑
~bj−1 6=~aj−1

|b1 · · · bj−1〉 12(|00〉+ |01〉+ |10〉+ |11〉) (7)

+
1

2(j−1)/2 |~aj−1〉
1
2
(|aj−1〉 (|0〉+ |1〉) |0〉+ |aj−1〉 (|0〉+ |1〉) |aj+1 · · · an〉). (8)

Then for the 2 qubits representing bj, we can use the function I described at the start, using the rest of
the bits as input to the oracle, and end up with the state

1

2(j−1)/2

∑
~bj−1 6=~aj−1

|b1 · · · bj−1〉 |0〉+
1

2j/2
|~aj−1〉 12 |aj−1〉 |aj〉 |aj+1 · · · an〉 . (9)

This is precisely the same as the state we started with, but with j decreased by 1. Since this clearly
the matches the required state for j = n, we can repeat this procedure n times and get a final state of
|a1 · · · an〉.

Each iteration only called the oracle twice, plus a few Hadamards and CNOTs, so this solves generic
search of size 2n in O(n) gates.

3 Hidden Shift with Cayley Graph Path-Finding

Given a group G with a small set S of generators, with G acting on some set X, suppose we are given that
g ∗ x = y for some unknown g and some known x and y. Our goal is to find the string g = s1 · · · sr, where
si ∈ S.

2

Consider the Cayley graph generated by S. What we can do is construct a superposition of bitstrings
b0 · · · bs, where bi indexes an element of S, and we can iterate through them. Start with the identity, then
multiply by sb0 , then multiply that by sb1 , etc., where if sbi = s−1bi−1

, then don’t multiply by anything (it
acts as the identity). This will create a uniform superposition of all group elements that are distance up
to s from the identity, in the Cayley graph. For each state in the superposition, apply that group element
to x. This gives a superposition of elements in X. We can also make the same superposition and apply it
all to y.

The idea is that we control which superposition to create with a single qubit initialized to |+〉. Suppose
|x〉 and |y〉 are the two states, where |x〉 is all points in X reachable from a path starting at x and |y〉 is
all points reachable from y. Then we have 1√

2
(|0〉 |x〉+ |−〉 |y〉. Apply a Hadamard to the first qubit:

(H ⊗ I) 1√
2
(|0〉 |x〉+ |−〉 |y〉 =1

2
(|0〉 |x〉+ |1〉 |x〉+ |0〉 |y〉 − |1〉 |y〉) (10)

=1
2

(|0〉 (|x〉+ |y〉) + |1〉 (|x〉 − |y〉)) (11)

The probability of measuring the left state, with the first qubit 0, is ‖|x〉+|y〉‖
2

, and the probability of

measuring 1 is ‖|x〉−|y〉‖
2

. Thus, by repeating this experiment, we can approximate (with precision linear in
the number of repetitions) the distance between |x〉 and |y〉.

Suppose we have two equal-sized sets Ax and Ay in X, and |x〉 is a uniform superposition of elements
in Ax and |y〉 is the same for Ay. Then |x〉 − |y〉 will cancel out all the elements that are the same. Thus,
the distance between them will be proportional to the symmetric difference (Ax ∪ Ay) \ (Ax ∩ Ay).

To use this: We modify the construction of the superpositions slightly: We pick one particular element
sx of S, and use that to start the walk that we apply to x, and another element sy and use that the start
the walk that we apply to y. If we picked the correct ones (i.e., sx = s1 and sy = s−1r), then the walks
will have much more overlap than if we picked the wrong ones. Since we can measure the overlap (i.e., the
symmetric difference), we can determine when we pick the right element.

There is likely some work to iron out the details: The difference in overlap might be small at certain
distances. For example, if we pick s, the distance of the walk in the Cayley graph, to be less than r/2 (r
is the minimum length of a word of generators in S to construct g such that g ∗ x = y), the overlap should
be 0. One thing we could do is repeat the process for s = 1, 2, · · · until the overlap is nearly 1. At some
point, the difference should be noticeable between paths that start with the right edge and paths that do
not, and noticeable with (likely) a polynomial number of tests.

Suppose that we need f(log n) tests for a sufficiently accurate measure of distance (where |G| = n
and f is a polynomial). Then the run-time should be O(r2|S|f(log n)); presumably, |S| = O(log n) and
r = O(log n), so we get O((log n)3f(log n)).

Thus, we have a polynomial algorithm for the hidden shift problem. Further, we made no assumptions
that the group was abelian!

3

