
The Need for Being Explicit When Communicating

Anonymous submission to CFail 2021

May 13, 2021

Transition to Quantum-Secure Cryptography Algorithms. With the advent of the quantum com-
puting era comes the requirement to upgrade public-key cryptographic systems to be secure against quantum
attackers, i.e., to use post-quantum (PQ) algorithms. Whilst there are significant research and standardiza-
tion activities taking place, for example NIST’s efforts to select PQ key encapsulation mechanisms (KEMs),
public-key encryption (PKE) and digital signature schemes (DSS) to be used in the new SP 800-56 and FIPS
186-4 standards, exploration into how these algorithms are compatible with different real world applications
is still behind. For instance, many applications require cryptographic algorithms with more advanced func-
tionality than KEMs, PKEs, and DSSs offer. Many of these advanced algorithms have yet to be realized in
the PQ setting and evaluated in practice.

One such advanced construction is that of implicit certificates. As explained in due course, implicit
certificates aim to reduce the large overheads associated with certificate management. To date, implicit
certificates have been instantiated over elliptic curves, but no PQ variants have yet been proposed. Within the
five main PQ families, lattices look to be the most promising in terms of offering more advanced constructions,
as other sophisticated primitives such as identity-based or homomorphic encryption schemes have already
been constructed from them.

In this research, we tried–and failed–to construct implicit certificates from the lattice-based DSS Falcon [6]
and Dilithium [5] which are finalists in NIST’s on-going PQ standardization. Our presentation will explain
why our constructions fail and what lessons we learned, hoping to inspire more research on this topic.

Explicit vs Implicit Certificates. For both explicit and implicit certificates, the root cert CertC includes
the CA’s public key pkC and the CA’s signature sCertC , i.e., it is self-signed. Every explicit sub-cert CertU
of a user U consists of the user’s public key pkU , and a signature of U ’s public key generated by the CA
sCertU ← Sign(skC ,CertU ). Simplified, if a verifier V wants to verify a signature sm generated by U on a
message m, the verifier first downloads CertC and CertU . V then computes Verify(CertU , sCertU , pkC). If
Verify returns “accept”, the verifier can then trustingly use pkU to verify the signature sm.
In contrast, an implicit sub-cert CertU of user U consists only of a so-called reconstruction value RU but not
of the user’s public key or the CA’s signature. In order to verify sm on m, the verifier V first reconstructs
the user’s public key pkU using RU and pkC . Therefore, using implicit certs saves space as long as the size
of a signature and the size of the user’s public key is larger than the size of the reconstruction value, i.e.
|sCertU |+ |pkU | > |RU |.

The Use of Implicit Certificates in Vehicle Communication. Implicit certificates are heavily used
in the IEEE 1609.2 and 1609.2.1 standards [2, 3] describing secure vehicle-to-vehicle (V2V) communica-
tion. More concretely, they use the standardized Elliptic Curve Qu-Vanstone (ECQV) implicit certificate
scheme [1]. ECQV seems, as far as we know, the only efficient construction for implicit certificate schemes.
We depict the ECQV scheme in fig. 1. The idea of the construction is as follows: the user chooses a kind of
ephemeral key and sends it to the CA. The CA chooses a randomness that is added to the user’s ephemeral
key, becoming the reconstruction value. The randomness, however, is also used as the randomness when
signing the certificate. The final user’s secret key is the secret key of the ephemeral key added to the signa-
ture on the user’s certificate. This is, in its core, enabled because essentially all elements in this scheme are
integers or points on the elliptic curve and hence, can be easily multiplied or added.

1



User U CA C

skC = dC

pkC = QC = dC ·G

kU ←$ [1, ..., n− 1]

KU ← kU ·G KU , U kC ←$ [1, ..., n− 1]

RU ← KU + kC ·G
CertU ← Encode(RU , U)

e← H(CertU )
r,CertU r ← ekC + dC mod n

e← H(CertU )
skU = dU ← ekU + r mod n

pkU = QU ← eRU +QC

User U CA C

gC , FC ← KeyGenFalcon

hC = gC · F−1
C

v−1
C ←σ R`q, f ′−1

C ← v−1
C · hC

skC = (gC , FC)

pkC = (hC , f
′−1
C )

ρ←$ {0, 1}256

A ∈ Rk×`q ← Expand(ρ)

(s1, s2, eU )←$ S`η × Skη × S`η
t← As1 + s2 mod q ρ, t, U r←$ {0, 1}128

CertU ← Encode(ρ, t, r, U)

c← F (r||CertU )
(z, Z)← F1((c, 0, ..., 0), gC · f ′C , fC)

(ρ, t, r, U)← CertU Z,CertU s.t. z + Z · v−1
C = (c, 0, ..., 0) · v−1

C

c← F (r||CertU )

v−1
C ← h−1

C · f
′−1
C

skU = (s1 + Z · v−1
C + z, eU )

pkU = t+A · c · h−1
C · f

′−1
C

Figure 1: ECQV implicit cert scheme [1] with G being the group generator (left) in comparison with our failed
construction from (simplified) Falcon and Dilithium (right), where Sη is the subset of Rq with polynomial
coefficients ≤ η

Constructing Implicit Certificates. When constructing secure implicit certificate schemes, the following
construction principles must be followed intuitively1:

• The reconstruction value should be smaller than the CA’s signature plus the user’s public key.

• Only the user should be able to compute their private key.

• Every party should be able to compute the user’s public key from the reconstruction value and the
CA’s public key.

• The CA’s secret mustn’t be revealed to any other party; in particular, not to the user.

• The user mustn’t be able to create their own certificates; this more or less implies that the CA’s
signature must be part of the user’s private key.

Implicit Certificates from Lattices. It is important to note that in both Falcon and Dilithium, the secret
key essentially consists of two or more polynomials with small coefficients and the public key of one or more
polynomials with coefficients modulo q. Moreover, the signature consists of a bit string and a polynomial
with rather small coefficients, but not as small as the secret polynomial’s coefficients as explained below.
Furthermore, the key and signature generation of Falcon are more complex than in elliptic curve crypto,
involving polynomial arithmetic and sophisticated sampling procedures. In our presentation we will briefly
explain the design principles of Falcon and Dilithium. The main recurring difficulties with constructing
implicit certificates from Falcon and Dilithium are

• conflicting requirements; some operations require variables to be large or small depending on how they
are used, while others require values to be “small enough but not so small that the secret is leaked”.

• Dilithium’s and Falcon’s security are based the learning with errors (LWE) or NTRU problem, respec-
tively. This brings additional constraints in how we can engineer the keys – it is not as simple as adding
or subtracting points on an elliptic curve.

• in implicit certificates, both user and CA are required to share secret information between them, but
without leaking their entire secret to each other.

1To ensure security, in addition, an appropriate security model should be defined, and the construction’s security should be
reduced from the security or hardness of another algorithms or mathematical problem.

2



• how to include enough information in the reconstruction value to enable reconstruction of the user’s
key without it becoming too large or revealing the CA’s secret key.

These difficulties lead to many different constructions based on Falcon or Dilithium that failed to achieve all
construction principles for implicit certificates. In our presentation, we will present a selection to demonstrate
the evolution of our ideas and the reasons why they haven’t worked out.

Implicit Certificate Scheme from Falcon and Dilithium. Our most promising construction is based
on both schemes, Dilithium and Falcon2, and is depicted in fig. 1. As pointed out above, the main issue is
that the signature size of Falcon (resp. Dilithium) is much larger than the allowed secret key size, and hence,
the signature over CertU cannot be added to the secret key. Another issue arises from the construction of
Falcon signatures: Originally, (z, Z) ← F1((c, 0, ..., 0), gC , fC) such that z + ZhC = (c, 0, ..., 0). This means
that while (z, Z) consist of rather small polynomials, to reconstruct pkU using pkC , we need to somehow
include hC which likely leads to adding a larger element. To overcome these issues we i) combined Falcon
and Dilithium because Falcon comes with smaller signature size and Dilithium allows for larger secret key
size and ii) introduced another small element vC , used throughout signature generation, to decrease the size
of the element that is then added to the secret key. Unfortunately, to not reveal the CA’s secret key and
by construction of the ModNTRU problem, we cannot decrease the size of the element to be added to the
secret key much further and it is still too large to be added to Dilithium parameters.

Summary. In this presentation, we explain common patterns and reasons why our ideas to construct
implicit certs from lattices have failed. As we do not prove that it is impossible, our results do not exclude
that implicit certificates can be constructed from lattices or even from Falcon and/or Dilithium. However,
our results indicate that it is not straight-forwardly possible without a major breakthrough or more clever
idea. This could have detrimental consequences for applications like V2V, as explicit certificates would have
to be used instead, bringing large overheads. This is particularly undesirable in safety-critical scenarios.
With this presentation we intend to stimulate further research on this topic and invite other researchers to
consider more sophisticated constructions. For example, to construct a variant of Falcon’s trapdoor sampling
that would allow to decrease the signature size further.

References
[1] SEC 4: Elliptic Curve Qu-Vanstone Implicit Certificate Scheme (ECQV) (2013)

[2] IEEE Standard for Wireless Access in Vehicular Environments—Security Services for Applications and
Management Messages (2016)

[3] IEEE Standard for Wireless Access in Vehicular Environments (WAVE)–Certificate Management Inter-
faces for End Entities (2020)

[4] Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: Modfalcon: Compact signatures
based on module-ntru lattices. In: Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security. pp. 853–866 (2020)

[5] Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., Stehle, D.: Crystals-
dilithium. Tech. rep., National Institute of Standards and Technology (2020), available at https://
csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

[6] Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Ricosset, T., Seiler,
G., Whyte, W., Zhang, Z.: Falcon. Tech. rep., National Institute of Standards and Technology (2020),
available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

2Strictly speaking, we use a generalized variant of Falcon, called ModFalcon [4]. In the original Falcon, n = 1, and ModFalcon
generalizes this to cases where n ≥ 2. This enables the combination of Falcon and Dilithium with dn = `, where d is ModFalcon’s
ring dimension and n corresponds to Dilithium’s parameter `. We follow Dilithium’s notation in our pseudo code.

3


