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Abstract. This paper describes a failed extension to the 3-halves technique. The idea is clever and
novel, however, unfortunately, the laws of linear algebra prevent it from working.
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1 Introduction

Garbled Circuits(GC) have been one of the major paradigms to achieve secure multiparty computation
right from its introduction in the 80s by Yao in his seminal paper [Yao86]. Ever since, it has been an
active area of study. Garbled circuits today are built using efficient symmetric key primitives, making them
extremely practical in situations where the computation or liveness of parties is a bottleneck. However,
this comes at the cost of communicating more bits. Hence, there has been a long line of work that is
focused on reducing the concrete communication size of garbled circuits [BMR90,NPS99,KS08,PSSW09,
KMR14,GLNP15,ZRE15,AAC+21]. The best concrete communication complexity today is achieved by
the three-halves garbling scheme [RR21]. The three-halves scheme requires communicating 3

2κ bits for
every AND gate, and no communication is needed for XOR gates.

In [KS08], Kolesnikov and Schneider introduced the free-XOR technique which removed communication
for all XOR gates in a circuit. In [ZRE15], Zahur et al. show a lower bound of 2κ bits to garble an
AND gate in a model they define as linear garbling. They also show how the linear garbling model
captures most of the practical garbling techniques known at that time. Following this, various works
[KKS16,BMR16,WmM17] showed how to construct garbling schemes for an AND gate by using techniques
not defined in the linear garbling model but could not extend this technique to improve communication
for garbling general circuits. Rosulek and Roy, in [RR21], showed how one could garble any general circuit,
using 3

2κ bits per AND gate while maintaining the free-XOR optimization, using the three-halves garbling
scheme. They achieved this using two techniques, Slicing and Dicing. They sliced the input labels into
halves and then used the control bit randomization technique, introduced in [KKS16].

However, most of these techniques concern circuits representing a given functionality with just fan-in two
gates. State of the art today to garble a higher fan-in gate uses a circuit composed of a sequence of fan-in
two gates to generate the higher fan-in gate. For example, to garble a n-input AND gate, (n− 1) 2-input
gates are used, and hence with a scheme like three-halves, one incurs a communication cost of 3(n−1)

2 κ
bits. While it is a viable solution, a vital question would be whether this is the most efficient way to
garble such gates.

2 Linear Garbling as a system of equations

Zahur et al. in [ZRE15] introduced the linear garbling model. The model encompassed most of the
practical garbling constructions known at that time. They also proved a lower bound on the concrete
communication complexity of a garbled gate for a 2-input AND gate. We now discuss how some existing
schemes in the linear garbling model can be seen as a system of linear equations, as shown in [RR21]. We
discuss garbling AND gates only as XOR is free.

Notations: For this section, we consider 2-input AND gates with input wires a, b and output wire c. Each
wire x has two wire labels, a 0-label X0, and 1-label X1. To comply with the free-XOR framework [KS08],
we also have a global ∆ such that X1 = X0 ⊕∆ for all wire labels. Therefore we can always consider a
pair of wire labels to be denoted {X0, X0⊕∆}. We denote by Gij the ciphertext for the row 2i+ j in the
permuted table. Therefore, the garbled gate is represented as G = {G00, G01, G10, G11}. We also assume
oracle access of the garbler and evaluator to a hash function H satisfying some security assumption.

Yao’s Garbling Scheme: We now describe Yao’s Garbling Scheme, used along with the point and per-
mute technique. The garbler encrypts the labels using a key and generates four ciphertexts G00, G01, G10, G11,



corresponding to each row of the permuted truth table. A key is derived by hashing the input labels
corresponding to that particular row. This gives the following four equations, assuming permute bits
pa = 1, pb = 0 (the second row encrypts C ⊕∆):

G00 = H(A0, B0)⊕ C

G01 = H(A0, B1)⊕ (C ⊕∆)

G10 = H(A1, B0)⊕ C

G11 = H(A1, B1)⊕ C

GRR3 Row Reduction: Randomly sampling A,B,C and a fixed global offset ∆ fixes the garbled gate
G above for the sampled values. Hence its size is also fixed to 4κ bits. However, as observed by Naor et
al. in [NPS99], we need a uniformly sampled C. Since the output of H is already pseudorandom, we can
set C = H(A0, B0), which would imply G00 = 0, hence decreasing the size of the garbled gate to 3κ. The
set of equations then reduces to:

0 = H(A0, B0)⊕ C

G01 = H(A0, B1)⊕ (C ⊕∆)

G10 = H(A1, B0)⊕ C

G11 = H(A1, B1)⊕ C

Half Gates: Zahur et al. in [ZRE15] suggested something that can be seen to be significantly different
in hindsight but still retains a structure similar to previous schemes. They introduce the possibility of
having a 2κ sized garbled gate by making one of the ciphertexts depend on the other two ciphertexts in
the garbled gate and the active input label A that the evaluator holds. They achieve this by replacing
the term H(A,B) in the previous schemes with H(A)⊕H(B), which results in the following equations:

0 = H(A0)⊕H(B0)⊕ C

G01 = H(A0)⊕H(B1)⊕ (C ⊕∆)⊕A0

G10 = H(A1)⊕H(B0)⊕ C

G01 ⊕G10 = H(A1)⊕H(B1)⊕ C ⊕ (A0 ⊕∆)

Three Halves: At this point, one could see that by carefully restructuring the half-gates equation,
everything the garbler can’t control can be shifted to one side of the equation. The garbler cannot
control the value of ∆ as it is fixed for the entire circuit, the hash outputs, which are pseudorandom by
assumption, and the input label A, which we now move to the left of the equation. On the right are the
elements the garbler has to compute: the output label and the garbled gate. We now denote the garbled
gate by G = {G1, G2}

C = H(A0)⊕H(B0)

C ⊕G1 = H(A0)⊕H(B1)⊕∆⊕A0

C ⊕G2 = H(A1)⊕H(B0)

C ⊕G1 ⊕G2 = H(A1)⊕H(B1)⊕ (A0 ⊕∆)

This can also be done with the equations of Yao’s Garbling scheme or the GRR3 row reduction technique.
A traditional way to represent this system of equations is Ax = b, with its solution x = {C,G1, G2}. For
half-gates, the following system holds:


1 0 0
1 0 1
1 1 0
1 1 1


 C
G1

G2

 =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1



H(A0)
H(A1)
H(B0)
H(B1)

⊕

0 0 0
1 0 0
0 0 0
1 0 1


A0

B0

∆

⊕

0
1
0
0

∆

A more concise representation of the above equation is:

V

 C
G1

G2

 = M


H(A0)
H(A1)
H(B0)
H(B1)

⊕R

A0

B0

∆

⊕ T∆
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Here T represents the output column of the permuted truth table. Applying the left inverse of the matrix
V to both sides gives the solution to this system, and the garbler can then send G = {G1, G2} to the
evaluator. Rosulek et al. in [RR21] showed that the above observation reduces constructing linear garbling
schemes to finding solutions to such a system of equations. They showed how one could do better than
half-gates using a novel technique called slicing. Indeed one can slice the output labels into two halves
of size κ

2 bits each and then garble each slice separately. Applying half-gates on each slice would generate
a garbled gate of size 2 × κ

2 bits for each output slice. Hence, the scheme will still require 2κ bits of
communication. However, if the two garbled gates could share a ciphertext, then the size of the garbled
gate would be 3κ

2 bits.

They then show how one could garble each slice such that they share a ciphertext. For a label X, let’s
denote the left slice by XL and it’s right slice by XR. To derive the output label CL, we use hash of the
form H(A) ⊕ H(A ⊕ B), and for CR, we use hash of the form H(B) ⊕ H(A ⊕ B), where A,B are the
active labels corresponding to a particular row being garbled. We now have two equations:


1 0 0
1 0 1
1 1 1
1 1 0


CL

G1

G3

 =


1 0 1 0
1 0 0 1
0 1 0 1
0 1 1 0




H(A0)
H(A1)

H(A0 ⊕B0)
H(A0 ⊕B1)

⊕R1


AL

AR

BL

BR

∆L

∆R

⊕ T∆L (1)


1 0 0
1 1 1
1 0 1
1 1 0


CR

G2

G4

 =


1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0




H(B0)
H(B1)

H(A0 ⊕B0)
H(A0 ⊕B1)

⊕R2


AL

AR

BL

BR

∆L

∆R

⊕ T∆R (2)

Before finding an R that works, if we solve the equation just in terms of the hashes, output label, and
garbled gate, we observe that the solution is of the following form:

G1 = H(A0)⊕H(A1)

G2 = H(B0)⊕H(B1)

G3 = H(A0 ⊕B0)⊕H(A0 ⊕B1)

G4 = H(A0 ⊕B0)⊕H(A0 ⊕B1)

Barring any addition of input labels to this equation, we see that G3 = G4 is the common Gi for the
two sliced output labels. It is incorrect, as we still have not accounted for T , which is essentially the
truth table. T enforces the necessity of having an R, and in this case, unlike in half-gates, there is no
R1, R2 that satisfies this set of equations for all values of T . That means that revealing R gives away the
permute bits. Three-halves solves this problem through the idea of dicing. These input label combinations
can be encrypted using a constant-size ciphertext for each row. The evaluator can only decrypt those
combinations needed for the row it is evaluating. This is called dicing. In three halves, they search for
R1, R2 from all possible matrices satisfying some given conditions such that it satisfies this equation for
a given T . They then show how to use the garbling equation to encrypt them using 5 bits, hence setting
the cost of the garbled gate to 3κ

2 + 5 bits.

3 Extending linear garbling to 3-input AND gates

Most garbling schemes cater to 2-input gates. To garble higher fan-in gates, we need to construct a
higher fan-in input gate using 2-input gates. For example, in the 3-input case, a 3-input AND gate is
constructed using two 2-input AND gates. We will need 2 · 3κ2 = 3κ bits to garble a 3-input AND gate
when we construct higher fan-in gadgets using the current approach. Therefore, it will be interesting to
see if one could do better by just garbling a 3-input truth table by extending their techniques.

In three halves, an essential factor contributing towards the improvement is the availability of an addi-
tional hash, H(A ⊕ B). As it does not help as is, they then use slicing to reduce the overall size of the
garbled gate. Similarly, we have additional hashes when looking at a three-input case with input labels
A, B, and C. The number of available hashes available is exponential in the number of inputs. So we now
do the following: We slice the labels into three slices. Let X be a label. We denote a sliced version of X
as X = X1||X2||X3. What we desire is to have an equation of the following form:

3



V

[
D⃗

G⃗

]
= MH⃗ ⊕R


A⃗

B⃗

C⃗

∆⃗

⊕ T∆⃗

We can now, just like in three halves, use the additional hashes, along with H(A), H(B), and H(C) for
the three different output slices, respectively. However, this direct extension doesn’t work as we have
repeating rows for different inputs in the above matrix. We need a hash combination that would change
for any change in the input to the circuit. To address this, we choose an approach where we discard H(X)
values for wire labels X. We see that H(X) only captures a change in the wire x, H(X⊕Y ⊕Z) captures
a change in the input of one or three wires x, y, z. Neither of them captures a change in two inputs to
the circuit as we are in the free-XOR setting. For example, for inputs (0, 0, 0) and (0, 1, 1), the first slice
of the output labels will always use the hash H(A0) and the hash H(A0 ⊕ B0 ⊕ C0), as the free-XOR
collapses the change in inputs of wires b and c, to the same hash value. A linear combination of the values
of the type H(X ⊕ Y ) captures an input change made simultaneously to two input wires. So, the garbler
includes the following hash combinations for encrypting a slice of the output label D, also :

D1 ← H(A⊕B)⊕H(B ⊕ C)⊕H(A⊕B ⊕ C)

D2 ← H(A⊕ C)⊕H(B ⊕ C)⊕H(A⊕B ⊕ C)

D3 ← H(A⊕B)⊕H(A⊕ C)⊕H(A⊕B ⊕ C)

Choosing the hash inputs and combinations for each row fixes matrix M and V , just like in the three-
halves garbling scheme. Just like in three halves, we know that the matrices on both sides should have
the same column space, and we also see that columns of M, V already span a space of dimension 7. Let
the common column space be G. Then,

G = colspace(V ) = colspace(M) ⊇ colspace(R⊕ [0|t])

We now examine the constraints on choosing the control matrix R. Let matrix K be a basis for the
co-kernel of M . As colspace(M) ⊇ colspace(R ⊕ [0|t]), We need KR = K[0|t]. Firstly, we must ensure
that the control matrix only uses the combinations the evaluator can use from its available wire labels.
We know that R acts on the vector

[
A⃗0 B⃗0 C⃗0 ∆⃗

]T
. Therefore, the last four columns of R indicate the

inclusion of ∆. This depends on whether the evaluator can access X0 or X0 ⊕ ∆. Thus, R decomposes
into 3× 3 sub-matrices in the following way:

R =



R0,0,0,A R0,0,0,B R0,0,0,C 0
R0,0,1,A R0,0,1,B R0,0,1,C R0,0,1,C

R0,1,0,A R0,1,0,B R0,1,0,C R0,1,0,B

R0,1,1,A R0,1,1,B R0,1,1,C R0,1,1,B ⊕R0,1,1,C

R1,0,0,A R1,0,0,B R1,0,0,C R1,0,0,A

R1,0,1,A R1,0,1,B R1,0,1,C R1,0,1,A ⊕R1,0,1,C

R1,1,0,A R1,1,0,B R1,1,0,C R1,1,0,A ⊕R1,1,0,B

R1,1,1,A R1,1,1,B R1,1,1,C R1,1,1,A ⊕R1,1,1,B ⊕R1,1,1,C


We define the marginal view of an input combination for matrix R(i, j, k) to be [Ri,j,k,A, Ri,j,k,B , Ri,j,k,C ],
which would be sufficient for the evaluator to know which linear combination is to be applied when it
holds the labels Ai, Bj and Ck.

We now study the structure of K[0|t]. We notice that we get eight matrices when we compute K[0|t]
for all t values. Let us call these matrices T1, · · · , T8 respectively. They correspond to a distinct set of
permutations for point and permute p1, · · · , p8. This is a complete set of possible permutations using
point and permute for the truth table.

Like in the three-halves scheme, finding an R that satisfies the above garbling equation for all t is
impossible. So we extend the same re-randomize and encrypt technique as in three halves. There are
some changes in how we structure R. Let us assume that there are fixed matrices R1, · · · , R8 such that
KRi = Ti for permutation pi. Let’s denote si as the activation variable for the permutation pi as in
si = 1 if pi is used, and 0 otherwise. Then, we can write

R =

8∑
i=1

siRi +R$ (3)
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such that KR$ = 0, and R$ coming from a distribution R such that the marginal views for every matrix
R$ ← R is uniform for all input pairs (i, j, k). We see that this uniform randomness in R$ for the marginal
views induces uniform randomness in the marginal views for the matrix R, as the matrices Ri are fixed.

Sampling R$: R$ should follow the exact structure as R as shown above. R$ is a 24 × 12 matrix.
Let C1, · · · , C12 be the 12 columns in R$. Then, because of the structure of R, we see that columns
C10 becomes dependent on C1, C4, C7. Similarly, C11 becomes dependent on C2, C5, C8 and C12 becomes
dependent on C3, C6, C9 respectively. Moreover, we observe the dependency across all three sets of columns
is the same. So it is enough to find a span for the matrix [C1, C4, C7, C10] and reuse it for the other two
column sets to construct the entire matrix R$.

Also, because we want KR$ = 0, the columns of R$ will be constructed by a span of the basis of the
right kernel of K. We compute the basis of the right kernel of K, which is of dimension 7, as it is the
same space as that of M , which is also of rank 7, as discussed before. We search over all possible 27 linear
combinations of this basis for each column C1, C4, C7 (note that this fixes C10) such that they form a
valid matrix [C1, C4, C7, C10] following the structure of R$.

This gives us a matrix space M of dimension 29. To get the complete matrix R$, we randomly choose
three matrices of 29 elements in this space. This gives us the following matrices

R$,1 = [C1, C4, C7, C10]

R$,2 = [C2, C5, C8, C11]

R$,3 = [C3, C6, C9, C12]

Hence, with augmenting and rearranging some columns, we have the matrix

R$ = [C1, · · · , C12].

4 The failure.

Unfortunately, the Ri values assumed in (3) do not exist.
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