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Abstract

In delegated computation research, the main prob-
lem asks how a computationally weaker client device
can obtain help from one or more computationally
stronger server devices to perform some computation.
Desirable solution requirements include correctness of
the computation, privacy of the inputs, high proba-
bility detection of any server malicious behavior, low
client runtime in the online phase, low communica-
tion complexity, low client storage complexity, and
minimal server trust.
We summarize the state of the art on delegated

computation of RSA decryption, a particularly elu-
sive problem which has been studied for 30+ years
with several attempted solutions and successful at-
tacks. We discuss some of the most recent progress,
which includes privacy and security models, and
provable solutions for related problems, such as del-
egating large-exponent RSA encryption, which im-
ply a transformation to achieve the result security
requirement. We also present three ‘partial solution’
protocols which provably meet all but one of the de-
sired requirements; specifically, one protocol requires
two non-colluding servers instead of one, and two
other protocols require high communication complex-
ity, with somewhat different performance tradeoffs.
We conclude with directions for future research.

1 Introduction and Model

The area of server-aided cryptography, or dele-
gation/outsourcing of cryptographic primitives, is
mainly concerned with the following problem: “how
can a computationally weaker client delegate cryp-
tographic computations to computationally superior
servers?”
This problem has been first discussed in [1, 2, 3]
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and a first formal model has been produced in [4]. In
the past few years, this problem is seeing an increased
interest because of the shift of modern computation
paradigms towards cloud/fog/edge computing, large-
scale computations over big data, Internet of Things,
etc. A solution to this problem is an interactive pro-
tocol between a client and one or more servers, where
the client holding an input x wants to delegate to the
server(s) computation of a publicly known function
F on input x, and the main desired properties of this
delegated computation of F (x) are:

1. result correctness: if client and server(s) hon-
estly follow their instructions, at the end of the
protocol the client obtains F (x);

2. input/output privacy: only minimal or no infor-
mation about x and/or F (x) is revealed to the
server(s); here, [4] formally defines privacy in the
sense of simulatability of the client’s messages
(as in the area of secure multiparty computa-
tion), and [5, 6] considers input privacy in the
sense of input indistinguishability; that is, even
malicious servers cannot distinguish two differ-
ent inputs from a protocol’s execution, except
possibly with very small probability ϵp;

3. result ϵs-security: even malicious server(s)
should not be able, except possibly with very
small probability (i.e., ϵs = 2−λ, for some sta-
tistical parameter λ) to convince the client to
accept a result different than F (x); and

4. resource efficiency: client’s runtime tC should
be significantly smaller than the runtime tF for
computing F (x) without delegation; usage of
other resources like communication complexity
cc, client’s storage complexity sc and runtime of
any offline phase tP , should also be minimized.

Following, for instance, [7], protocols can be parti-
tioned into (a) an offline phase, where input x is not
yet known, but somewhat expensive computation can
be performed by the client deployer or even the tem-
porarily unconstrained client’s device, and stored on
the client’s device, and (b) an online phase, where we
assume the client’s resources are limited, and thus
the client needs the server’s help to compute F (x).
To capture meaningfully distinct input scenarios in
delegation, we say that an input x to F is
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- public-online if x is unknown in the offline phase
but known to both parties in the online phase;

- public-offline if x is known to both parties start-
ing from the offline phase;

- private-online if x is unknown in the offline phase
but known to C in the online phase;

- private-offline if x is known to C starting from
the offline phase but unknown to S.

The RSA Functions. Let p, q be primes of the same
length, let n = p, q, and let Z∗

n denote the set of
integers coprime with n. We consider the group
(Z∗

n, ·), where · denotes multiplication modulo n. Let
e, d denote integers such that gcd(e, ϕ(n)) = 1 and
gcd(d, ϕ(n)) = 1. In this group, with parameter val-
ues n, e, d, we define the following functions:

1. RSA encryption exponentiation as eExpn,e : m ∈
Z∗
n → c ∈ Z∗

n, such that c = me mod n.
2. RSA decryption exponentiation as dExpn,e,d : c ∈

Z∗
n → y ∈ Z∗

n, such that y = cd mod n.

We consider eExpn,e as a base-private-online
exponent-public-offline exponentiation function, and
dExpn,e,c as a base-public-online exponent-private-
offline exponentiation function. The textbook algo-
rithm to compute functions eExpn,e and dExpn,e,c is
the square-and-multiply algorithm, which requires up
to 2ℓ multiplications modulo n, but see, e.g. [8], for
algorithms with a slightly improved constant.

This paper. Recently, single-server delegation pro-
tocols provably satisfying the defined properties
of result correctness, input/output-privacy, result-
security and resource efficiency, have been proposed
for some operations often found in cryptographic pro-
tocols, including: exponentiation in discrete loga-
rithm groups (see, e.g., [19]), large-exponent RSA
encryption (see, e.g., [9]), pairings (see, e.g., [24, 26,
27]), modular multiplication (see, e.g., [28]). On the
other hand, the problem of delegating RSA decryp-
tion remains particularly elusive, despite several at-
tempts in the literature. Accordingly, we summarize
the state of the art on delegated computation of RSA
decryption, starting from the first protocols, pro-
posed in [3], and going into more recent protocols and
potential lower bound results. We then present three
‘partial solution’ protocols, based on recent work on
delegating large-exponent RSA encryption [9], which
provably meet all but one of the desired properties;
specifically, one protocol, in Section 3.2, requires two
non-colluding servers, and two additional protocols,
in Section 3.3 and in Section 3.4, require high commu-
nication complexity. The latter of these two protocols
slightly improves the communication complexity with
only minor worsening of all other properties. Both
protocols are also contrasted with previous literature

proposals which also exhibited high communication
complexity (i.e, [25]).

2 Previous Work

Delegation of RSA Decryption. In [3], the first
paper proposing delegation of cryptographic algo-
rithms, the authors presented two protocols for the
delegation of RSA decryption. The basic idea of such
a protocols was as follows: the client sends some ran-
domized masking of exponent d to the server; the
server computes exponentiations to exponents related
to the masking, and sends the results to the client;
finally, the client uses the mask computation to turn
the received exponentiation results into the desired xd

mod n exponentiation. The specific masking used in
the first of their protocols was

d = f1d1 + · · ·+ fMdM mod ϕ(n),

for some random integers d1, . . . , dM send by the
client to the server, some random bits f1, . . . , fM kept
secret by the client, and some small value M . While
this might seem an interesting approach, in that re-
covering d might seem to require exhaustive search
of all possible vectors (d1, . . . , dM ), about 20 papers
were published containing faster attacks to their pro-
tocols and/or proposing protocol variants and im-
provements, as well as faster attacks to these vari-
ants. The reader is referred to Section 2 of [10] and
Section 1.2 of [20] for a detailed discussion of these
papers. All of these results were published before the
introduction of a formal delegation model [4], and
therefore protocols were described without proofs for
their properties, other than sometimes claiming secu-
rity against all previous attacks. For some of these
papers, it might be interesting to study if their tech-
niques suffice to provably achieve some of the prop-
erties formally defined in the more recent delegation
models. In particular, some of these attacks were
based on an attacker’s knowledge of signatures, which
would not necessarily be part of the adversary model
when considering decryption delegation.

More recently, protocols were proposed [11, 12, 13,
14, 15, 16] where the RSA exponent was hidden in
one or more linear equations depending on a random
value t in the exponent group. As we analyzed these
protocols, we noted the following properties: (a) a
full-domain value t would perfectly hide the RSA
secret key from the server, but require client work
comparable to non-delegated computation of RSA de-
cryption; (b) a smaller-size value t would reduce the
client’s work but also proportionally reduce the work
needed to derive the RSA secret key. Properties (a)
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Table 1: Summary of lower bound results from Theorems in [22] for protocols for the delegation of public-
online-base private-offline-exponent exponentiation in prime order groups, in the generic group model, where
s is an arbitrary integer. Each row represents a barrier in the sense that a protocol with a better improvement
factor than what written in the 2nd column, in a scenario with protocol parameters as described in columns
3-5, would imply an efficient attack that successfully violates input privacy.

Lower Bound
Improvement Factor

(over non-deleg sq and mult alg)
Offline Client

Exponentiations
Online Server

Exponentiations
# of rounds

Theorem 2 4 O(1) 1 1
Theorem 3 (s+ 1)/2 O(1) s 1
Theorem 4 ℓ+ 2 ℓ = O(1) 1 1
Theorem 5 8 O(1) 2 2
Theorem 6 (4 + (s+ 1)2)/2 O(1) s 2
Theorem 7 2s+1 O(1) s s

and (b) imply that these protocols do not simulta-
neously satisfy input privacy and client resource effi-
ciency. Indeed, the variant of this approach used in
[11] was broken by [22] using lattice-based cryptanal-
ysis techniques.

Other exponent masking attempts were proposed
in [17, 18], where the exponent was masked by a mul-
tiple of the group order. This would seem a poten-
tially interesting and valid idea, since, on one hand
the random value would mask d, and on the other
hand the server’s exponentiation to a multiple of the
group order would cancel out and allow C to recover
an exponentiation to the original exponent. However,
these protocols were broken in [21] using lattice-based
cryptanalysis techniques.

Finally, [22] proves, in the generic group model,
lower bounds on the efficiency of delegation pro-
tocols for a class of functions, including one that
has some similarity to RSA decryption: public-
online-base private-offline-exponent exponentiation
in prime-order groups. These results are summa-
rized in Table 1. We note that it is yet unknown if
these results can be extended to RSA groups. Even
if they were, it would still be possible to design RSA
decryption delegation protocols with non-trivial im-
provements over non-delegated computation.

Delegation of RSA Encryption. Early papers in
the area mentioned that low-exponent RSA encryp-
tion is much more efficient than RSA decryption, and
did not attempt delegation protocols for it. Recent
results in [6, 23, 9] include protocols for the delega-
tion of large-exponent exponentiation in RSA encryp-
tion. All of these latter results formally prove proto-
col properties, also captured in Table 2. In particu-
lar, in [9], a client performs about 3λ multiplications
if result 2−λ-security is desired. We later use these
results so that the verification component of the RSA
decryption delegation protocols in Sections 3.2, 3.3

and 3.4 do not need to assume that RSA encryption
was computed using a small exponent.

In what follows, we denote by Pe a delegation pro-
tocol for the RSA encryption (large-exponent) expo-
nentiation function eExpn,e : x → xe mod n, satisfy-
ing correctness, input privacy, and ϵ-security. Pe can
be instantiated using any of the protocols in Table 2.

3 RSA Decryption Delegation:
Partial Solution Protocols

In this section we present protocols that only par-
tially solve the RSA decryption delegation problem,
as previously stated.

We start by showing a transformation that trans-
forms a protocol that does not achieve the result se-
curity property into one that does, using protocol
Pe. We then show 3 protocols where the server(s)
are honest-but-curious: a 2-server protocol with ef-
ficient communication complexity (in Section 3.2), a
single-server protocol with somewhat inefficient com-
munication complexity (in Section 3.3), and another
single-server protocol with a somewhat different per-
formace tradeoff that results in slighty improved com-
munication complexity (in Section 3.4).

3.1 A Transformation to Achieve the
Result Security Property

We observe that if there exists a delegation protocol
P for the RSA decryption exponentiation function
dExpn,e,c : c → cd mod n satisfying correctness and
input privacy, then we can construct a delegation pro-
tocol P ′ for the same function, satisfying correctness,
input privacy, and result ϵ-security. The transforma-
tion goes as follows: in P ′, C and S run one execution
of protocol P on the same inputs, thus returning m
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Table 2: Results on provable delegation of large-exponent RSA Encryption where tC is C’s runtime in the
online phase; tP is C’s runtime in the offline phase; cc is the communication exchanged between C and S;
mc is the number of messages exchanged between C and S; sc is the storage complexity of C; texp(ℓ) is an
exponentiation to an ℓ-bit exponent; we can set m as an arbitrary integer (e.g., m ≤ 100) and c ∈ {4, . . . , 9}.

tC tP cc sc mc ϵstexp(λ) # mult texp(σ) # inv
[23] 0 2 c 1 2m m+ c 2 ∼ O(1/c)
[9] 2 5 2 1 4 4 2 2−λ

[6] 0 5 2 0 6 4 2 1/2

to C; at the end of this execution, C checks the ob-
tained result m by using delegation protocol Pe for
eExpn,e : x → xe mod n, setting x = m, and thus
obtaining the result c′; finally, C checks that c′ = c.

We note that P ′ preserves the efficiency of P in all
metrics; in particular, if C is efficient in P, then C
is also efficient in P ′, where it only performs 2 addi-
tional exponentiations to a λ-bit exponent in the on-
line phase, to achieve the result λ-security property.
In practice λ can be set much smaller than |n|; e.g.,
λ = 50. Finally, note that with respect to P, protocol
P ′ requires two additional messages, the computation
of 2 exponentiations in the offline phase, and C’s com-
putation of 2 λ-bit-exponent exponentiations in the
online phase, when requiring result 2−λ-security.

3.2 A 2-Server Delegation Protocol

We describe a 2-server protocol P1 = (C, S1, S2)
for the delegated computation of dExpn,e,c : c → cd

mod n.

Informally, protocol P1 goes as follows. C splits
the secret exponent d into two random values that
sum to d modulo ϕ(n); then, C asks each server for
an exponentiation of c to one of these values; and
finally, C returns the product mod n of the values
received by the two servers.

A formal description of protocol P1 and its prop-
erties follows.

Input to C and S = (S1, S2): n, e, c, desc(dExpn,e,c)

Input to C: d ∈ {1, . . . , ϕ(n)− 1}, ϕ(n), c ∈ Z∗
n

Protocol Steps:

1. C randomly chooses u ∈ {2, . . . , ϕ(n)− 1},
C sends u to S1 and z := d−u mod ϕ(n) to S2.

2. S1 computes and sends w1 := cu mod n to C
3. S2 computes and sends w2 := cz mod n to C
4. C computes m = w1 · w2 mod n.

Protocol Properties: The efficiency properties are
verified by protocol inspection. In particular,

– C’s runtime complexity consists of 1 multiplication
in Z∗

n;

– S’s runtime complexity consists of 1 exponentia-
tion in Z∗

n for each server;
– with respect to round complexity, P1 only requires

2 messages between C and each server; and
– with respect to communication complexity, P1 only

requires the transfer of 2 values in Z∗
n and 2 val-

ues in Zϕ(n).

The correctness property follows by showing that if C,
S1 and S2 follow the protocol, C always outputs m =
cd mod n since m = w1 ·w2 = cu · cz = cu · cd−u = cd

mod n.

The 1-server input privacy property is verified by
showing that no information about d is leaked to any
single server from the message received by C, since
each one between u and d−u mod ϕ(n) is uniformly
distributed in Z∗

n, and we assume the two servers do
not collide.

Discussion. We note that the result security prop-
erty can be achieved for this protocol by combining
it with the transformation in Section 3.1 (i.e., C del-
egates the computation of c′ = me mod n using any
of the protocols in Table 2 and checks that c′ = c).
The properties of the resulting protocol are summa-
rized in Table 4, where they are also compared with
2 protocols presented in [25], which turn out to have
somewhat similar properties. This combination of
protocols P1 and Pe comes close to solving the RSA
decryption delegation problem, except for requiring
two non-colluding servers. It is also not hard to ex-
tend it into a protocol which requires s servers, of
which up to s − 1 can collide. However, known ap-
proaches do not seem to help in transforming this
protocol into a 1-server protocol, as we now explain.
First, note that both w1 and w2 do depend on c which
is a public-online input and thus cannot be precom-
puted by C. Next, note that C cannot ask S1 to com-
pute both w1 and w2 as that would leak d. Finally,
as discussed in section 2, two literature approaches to
mask d in a message from C to a single server S, us-
ing linear random equations and/or multiples of the
group order, have resulted in broken protocols.
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3.3 A Time-Efficient Communication-
Inefficient Protocol

We describe a 1-server protocol P2 = (C, S) for the
delegated computation of dExpn,e,d : c → cd mod n.
Informally, protocol P2 goes as follows. First, se-

cret exponent d is considered in its b-ary represen-
tation, for some parameter b ≥ 2. By viewing this
representation as a k-term summation, S computes
all possible b exponentiations to each different power
of b as exponent, and sends all these k(b − 1) expo-
nentiations to C. Finally, C can use the exponent
representation coefficients to select the appropriate k
values among the received exponentiations, and mul-
tiply them to obtain cd mod n.

A formal description of protocol P2 and its prop-
erties follows.

Input to C and S: n, e, c and parameter base b; also,
let k be the min value such that bk ≥ n

Private input to C: d ∈ Zϕ(n)

Offline phase instructions:

1. Write private exponent d in base b; i.e., d =
(dk−1, . . . , d1, d0)b =

∑k−1
i=0 di · bi, where di ∈

[0, b− 1] for i ∈ {0, . . . , k − 1}.
2. C stores (dk−1, . . . , d1, d0)b on its device.

Online phase instructions:

1. S sets w0,1 := c and w0,j := w0,1 ·w0,j−1 mod n,
for j = 2, . . . , b− 1
For i = 1, . . . k − 1

S sets wi,1 := wb
i−1,1 mod n

For j = 2, . . . b− 1
S sets wi,j := wi,1 · wi,j−1(= wj

i,1) mod n
S sends wi,j for i = 0, .., k−1, and j = 1, .., b−1

2. C sets m = w0,d0

For i = 1, . . . k − 1
C sets m = m · wi,di

mod n

Protocol Properties: The efficiency properties are
verified by protocol inspection; in particular,
– C’s runtime complexity consists of k − 1 multipli-

cations, which improves over non-delegated mul-
tiplication by a multiplicative factor of ≥ log b;

– S’s runtime complexity consists of k − 1 exponen-
tiations of power b and (k − 1) · (b− 2) multipli-
cations in Z∗

n;
– the offline runtime complexity only takes time lin-

ear in |d|;
– with respect to round complexity, P2 only requires

2 messages between C and S; and
– with respect to communication complexity, the on-

line phase of P2 requires the transfer of k · (b −
1) + 1 values in Z∗

n.
The correctness property follows by showing that if

C and S follow the protocol, C always outputs m =

cd mod n since d = (dk−1, . . . , d1, d0)b =
∑k−1

i=0 di ·bi
and cd is

= c
∑k−1

i=0 di·bi =

k−1∏
i=0

(cb
i

)di =

k−1∏
i=0

(wi,1)
di =

k−1∏
i=0

wi,di
.

The input privacy property holds with parameter
ϵp = 0 since C does not send any message to S during
this protocol.

Discussion. We note that the result security property
can be achieved for protocol P2 by combining it with
the transformation in Section 3.1 (i.e., C delegates
the computation of c′ = me mod n using any of the
protocols in Table 2 and checks that c′ = c). The
properties of the resulting protocol are summarized
in Table 4. This combination of protocols P2 and Pe

comes close to solving the RSA decryption delegation
problem, except for requiring very high communica-
tion complexity; specifically, about k(b−1) group val-
ues where parameters b, k are chosen so that bk ≥ n,
and C’s runtime in the online phase consists of k− 1
multiplications mod n. However, known approaches
do not seem to help in transforming this protocol into
a communication-efficient protocol, as we now ex-
plain. First, note that choosing a smaller/larger value
for b improves/worsens the communication complex-
ity while worsening/improving C’s runtime. Second,
note that shorter vector-type representations of d
have appeared in many past efforts, starting with [3],
and none of them has been proved secure, as discussed
in Section 2.

3.4 A Time-Efficient Communication-
Improved Protocol

We show a 1-server protocol P3 = (C, S) for the del-
egated computation of dExpn,e,d : c → cd mod n.

Informally, protocol P3 goes as follows. As before,
secret exponent d is considered in its b-ary representa-
tion d =

∑k−1
i=0 di ·bi, for some parameter b ≥ 2. Note

that cd mod n can thus be seen as a product of ex-
ponentiations with bases cdi and powers of b as expo-
nent. In this protocol C sends random masks of these
bases and asks S to compute the product of expo-
nentiation to the known power-of-b exponents. Upon
receiving values from S, C can remove the masks by
using a product of exponentiations computed in the
offline phase, and thus recover cd mod n.

A formal description of protocol P2 and its prop-
erties follows. Let G be a pseudo-random generator.

Input to C and S: n, e, c and parameter base b; also,
let k be the min value such that bk > n.

Private input to C: d ∈ Zϕ(n)

Offline phase instructions:
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Table 3: Performance results of our RSA Decryption delegation protocols with result security holding against
a malicious server S, where tC is C’s runtime in the online phase; tP is C’s runtime in the offline phase; cc
is the communication exchanged between C and S; mc is the number of messages exchanged between C and
S; sc is the storage complexity of C; ϵs is the result security parameter, ϵp is the input privacy parameter;
texp(ℓ) is an exponentiation to an ℓ-bit exponent, and tprod,k,exp(σ) is the time to compute a product of k
exponentiations of group elements.

Protocol
tC tP cc sc mc ϵs ϵp # Servers

texp(λ) mult tprod,k,exp(σ) texp(σ) inv
P1 + Pe 2 6 0 2 1 8 4 6 2−λ 0 2
P2 + Pe 2 k + 4 0 2 1 k(b− 1) + 5 k 3 2−λ 0 1
P3 + Pe 2 k + 6 1 2 2 b+ k + 3 2k + 5 5 2−λ 0 1

Table 4: Performance results of RSA Decryption delegation protocols from this paper as well as [25], when
result security only holds against a “honest but curious” server S, and where we use the same parameters
as in Table 3.

Protocol
tC

# of mult.
tP

# of exp.
tS

# of exp.
cc sc mc ϵp # Servers

P1 1 No 2 4 0 4 0 2
[25] [§2A] 2b+ k − 4 No k − 1 k + 1 0 2 0 1
[25] [§2B] b+ k No 0 σ + 1 0 2 0 1

P2 k − 1 No k − 1 k(b− 1) + 1 1 1 0 1
[25] [§2C] k + 1 Yes 2b− 2 b+ k + 1 b 3 0 1

P3 k + 1 Yes k b+ k − 2 3 3 negl 1

1. Write private exponent d in base b; i.e., d =
(dk−1, . . . , d1, d0)b =

∑k−1
i=0 di · bi, where di ∈

[0, b− 1] for i ∈ {0, . . . , k − 1}
2. C pseudo-randomly chooses u0, . . . , uk−1 ∈ Z∗

n

using G on input a random seed s
C sets v0 := (

∏k−1
i=0 ubi

i )−1 mod n
3. C stores ((dk−1, . . . , d1, d0)b, s, v0) on its device.

Online phase instructions:

1. S sets B1 := c and computes Bj := Bj−1 · c
mod n, for j = 2, . . . , b− 1
S sends B2, . . . , Bb−1

2. C sets B0 := 1, B1 := c, and computes
zi := Bdi

· ui mod n for i = 0, . . . k − 1
C sends z0, . . . , zk−1

3. S computes w0 :=
∏k−1

i=0 zb
i

i mod n and
S sends w0

4. C returns m := w0 · v0 mod n,

Protocol Properties: The efficiency properties are
verified by protocol inspection; in particular,
– C’s online runtime complexity consists of k+1 mul-

tiplications, which improves over non-delegated
multiplication by a multiplicative factor of ≥
log b;

– S’s runtime complexity consists of 1 product of k
exponentiations, and b−2 multiplications in Z∗

n;
– the offline runtime complexity consists of 1 prod-

uct of k exponentiations with random k bases, 1
inversion in Z∗

n,and time linear in |d|;

– with respect to round complexity, P3 requires 3
messages between C and S; and

– with respect to communication complexity, the on-
line phase of P3 requires the transfer of b+k− 1
values in Z∗

n.
The correctness property follows by showing that if

C and S follow the protocol, C always outputs m =
cd mod n since d = (dk−1, . . . , d1, d0)b =

∑k−1
i=0 di ·bi

and

m = w0 · v0 =

k∏
i=0

zb
i

i · (
k∏

i=0

ubi

i )−1

=

k∏
i=0

(Bdi
· ui)

bi ·
k∏

i=0

u−bi

i =

k∏
i=0

(Bdi
)b

i

=

k∏
i=0

(cdi)b
i

= c
∑k

i=0 di·bi = cd

The privacy property of the protocol against a ma-
licious S follows by observing that C’s message to S
is a sequence of pseudo-random values in Z∗

n and is
thus pseudo-independent from d. Specifically, the val-
ues sent by C to S are z0, . . . , zk where zi = Bdi

· ui

mod n for all i = 0, . . . , k−1 and zk = m ·uk mod n.
Note that as u0 . . . , uk are chosen as pseudo-random
values in Z∗

n using G’s output on input a random
seed s, even z0, . . . , zk are pseudo-random values in
Z∗
n. Thus, under the assumption that G is pseudo-
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random, the probability that any efficient malicious
S learns some additional information about private
exponent d, is negligible.

Discussion. Note that the result security property
can be achieved for this protocol by C delegates the
computation of c′ = me mod n(= w1 · v1 mod n)
through steps 4 to 6 and checks that c′ = c. The
properties of the resulting protocol are summarized in
Table 4, where they are also compared with a protocol
presented in [25], which turn out to have somewhat
similar properties.
This combination of protocols P3 and Pe comes

close to solving the RSA decryption delegation prob-
lem, except that it still requires somewhat high com-
munication complexity for typical parameter values
of b, k. Similarly as noted at the end of Section 3.3,
shorter vector-type representations of d have ap-
peared in many past efforts, starting with [3], and
none of them has been proved secure, as also dis-
cussed in Section 2.

4 Conclusions and Directions
for Future Research

The problem of delegating the computation of RSA
decryption has attracted a large amount of solution
proposals and attacks for 30+ years, despite advances
in delegation protocols for other computations of use
in cryptographic protocols. Desirable requirements
by a solution to this problem include correctness of
ciphertext computation, privacy of RSA secret key,
high probability detection of a malicious server try-
ing to convince the client of an incorrect RSA ci-
phertext, efficient online phase runtime for both the
client (i.e., significantly smaller than the best known
non-delegated computation) and the server (i.e., not
much worse than the best known non-delegated com-
putation), low communication complexity, low client
storage complexity, and minimum number of servers.
We presented 3 provable solutions satisfying all

above requirements but one: a scheme requiring 2
non-colluding servers, and a scheme requiring high
communication complexity. One open direction is
to reduce the number of servers or reduce commu-
nication complexity in these 2 protocols. Another
interesting direction is to extend the lower bounds
from [22], and reviewed in Table 1, from prime-order
groups, to RSA groups. Even if this latter problem
were solved, we note that such lower bounds would
not be ruled out the possibility of designing protocols
with better communication complexity performance
(or overall better performance tradeoffs) than those
presented here.

We discussed that much research has been pro-
duced on attacks and variations of the protocols pro-
posed in [3]. As many of the attacks considered an ad-
versary model where the adversary obtains signatures
with the same RSA secret key, one direction worth in-
vestigating is whether techniques in these protocols
can be used to provably delegate the computation of
RSA decryption, where no signatures would be avail-
able to the adversary.
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