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1 Introduction

Information-set decoding (ISD) algorithms are the most efficient generic attacks against the decoding prob-
lem, which is the computational problem underlying the security of code-based primitives. As these primitives
are considered one of the most prominent candidates for quantum-safe cryptography, analyzing the complex-
ity of both classical and quantum ISD algorithms attacking the decoding problem is crucial for determining
their security. In this work, we are primarily interested in one of the latest advancements in cryptanalysis
of the decoding problem: sieving-based ISD algorithms. Before giving more details on these algorithms, let
us formally define the computational problem we are attacking and related notions. An [n, k| binary linear
code is a linear subspace C C [F5 of dimension k. The decoding problem is then given as follows.

Decoding problem, DP(n,k,w) l

Given an [n, k] binary linear code C and integer w, find a codeword x¢ € C of weight |x¢| := wﬂ

* The (Hamming) weight |x| of x € F3 is its number of non-zero coefficients in x.

The decoding problem is NP-hard in the worst case [BMvT78|. More important for cryptographic pur-
poses, it is known that w can be chosen to guarantee exactly one solution on average, giving us the so-called
unique decoding regime. In this regime, the decoding problem is believed to be hard on average: for a random
instance of the problem, all known algorithms (including ISD) run in time and memory exponential in n.

Sieving-Based ISD. Since the introduction of ISD by Prange |[Pra62|, it has been improved using various
techniques. The most recent variant of ISD uses sieving as a subroutine. Sieving-based ISD was introduced
in |[GJN23| and further generalized and improved in [DEEK24|, yielding asymptotic runtime close to that
of the state-of-the-art algorithms [MMT11,BJMM12,MO15| and better time-memory trade-offs. These im-
provements raise natural questions on how well quantum analogs of sieving-based ISD perform, and how
these compare to other quantum ISD algorithms [Ber10, KT17,|Kir18].

Sieving Outside of ISD. While sieving-based algorithms are new in code-based cryptanalysis, they are
abundant in lattice-based cryptanalysis and result in the state-of-the-art classical [BDGL16| and quan-
tum |[BCSS23| algorithms for the shortest vector problem. In particular, this raises yet another question
whether similar quantum speed-ups can be obtained for sieving for codes (i.e., as an algorithm in itself and
not necessarily inside the ISD context). Nevertheless, an important difference is that in the lattice setting,
sieving is used to attack a full instance of a problem, while in the code setting, it is used as an ISD subroutine
attacking a subinstance of the decoding problem.

Main Contributions. We study a natural quantum analog of the sieving-based ISD framework considered
in |[GJN23, DEEK24|, and show it does not provide any speed-up over the first presented quantum ISD
algorithm [Ber10]. Our analysis highlights that novel ideas are needed to outperform |Berl0| and, ideally,
also the state-of-the-art quantum ISD algorithms [KT17,Kir18|. We suggest two natural attempts to adapt
the sieving-based ISD framework, and explain why these do not allow for overcoming the found limitations.
In addition, we consider quantum analogs of one component of the sieving-based ISD framework, namely the
code sieving subroutine, and demonstrate that quantum speed-ups are possible for this part. Specifically,
using the quantum-walk framework from [MNRSI11| and techniques from quantum lattice sieving |CL21|
(modified to the code setting), we obtain a speed-up over the best known classical algorithm from [DEEK24]
and over our baseline quantum variant that uses Grover’s algorithm |Gro96|. Nevertheless, our aforemen-
tioned result indicates that these quantum speed-ups for the code sieving subroutine do not lead to an
improved quantum ISD algorithm.
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2 Preliminaries

Information-Set Decoding (ISD). We focus on ISD algorithms following the framework from [FS09] for
solving a random instance of DP(n, k,w). As input, such an ISD algorithm is given an [n, k] random binary
linear code, an integer weight w, and a certain oracle A. It then guesses part of the solution (corresponding
to the so-called information set), thereby creating a subinstance of the decoding problem, DP(n’, k,w') for
kE <n' <mn, w < max(n,w), with many solutions. The algorithm then invokes the oracle A that finds
many solutions to the subinstance and returns them as a list £. Finally, the algorithm checks if any of the
solutions to the subinstance from L yields a solution to the original problem. If so, it outputs a solution, i.e.,
a codeword x¢ € C of Hamming weight w. Otherwise, the algorithm returns to the guessing step.

Runtime of Classical ISD. The runtime of a classical ISD algorithm (within the aforementioned framework)
depends on the expected runtime T4 of the oracle A, the probability p; that the initial guess was correct,
and the probability ps that a solution from L yields a solution to the original problem. Specifically, writing
N for the size of £, the expected runtime of this ISD algorithm is O(%), where p; := (Z}l/) ("7”/)/(3), and

w—w’
p2 = NZ”/’]“/(Z//). See IDEEK24] Theorem 3.1] or the original proof in [FS09).

Runtime of Quantum ISD. The best known quantum ISD algorithms |Ber10,KT17, Kirl8| are based on
the idea that amplitude amplification (AA) [BHMTO02| allows for obtaining a quadratic speed-up when
searching for a solution of the decoding problem over multiple iterations of the ISD algorithm. Furthermore,

the subroutine A is allowed to be quantum. The runtime of the resulting quantum ISD algorithm is O( \/Z:l““—m),

where p; and po are as before, and T4 is the expected runtime of the (quantum) oracle A.

Code Sieving. Code sieving |[GJN23DEEK24]| solves an instance of DP(n’, k,w’) where the goal is to find
N codewords of weight w’ in an [n/, k] code C’. The algorithm starts by sampling vectors in F% of weight w’,
forming an initial list. It then ‘sieves’ vectors from the initial list to obtain codewords in C’. The sieving is
performed iteratively, by adding one code constraint in each sieving step, to eventually obtain an output list
of vectors that satisfy all code constraints of C’. We observe here that simply adding a code constraint would
shrink the list size by half in each iteration, resulting in a too-short output list. To avoid the shrinking, the
algorithm adds new vectors of the desired weight in each iteration, which are obtained as a solution to the
following near-neighbor search (NNS) problem.

Near-neighbor search, NNS(n’,w', N)

Given a list £ of N independent and uniformly random vectors in }Fg’ of weight w/, find all pairs
(x,y) € L2 satisfying |x +y| = w/ﬁ

“ By ‘+’ we denote the bitwise ‘XOR’ between two vectors.

Since the number of iterations corresponds to the number of code constraints, which is polynomial in n, the
runtime of the sieving algorithm is determined by the runtime of an NNS algorithm.

3 Quantum Sieving-Based ISD

With sieving-based 1SD we refer to the ISD algorithm obtained when using code sieving (as described before)
as its subroutine A. We now consider a natural quantum analog of sieving-based ISD, referred to as quantum
sieving-based ISD, that results from using code sieving as subroutine in the quantum ISD algorithm. While
the best known algorithm for sieving-based ISD has promising performance compared to the classical state-
of-the-art for ISD, we show that quantum sieving-based ISD does not yield performance comparable to the
quantum state-of-the-art [KT17,Kir18§].

3.1 On Limitations of Quantum Sieving-Based ISD

As shown in [DEEK24], using code sieving as the oracle A imposes a lower bound on the size of the list £
that A returns. This lower bound turns out to be a bottleneck in improving over what we refer to as quantum
Prange, the classical Prange algorithm quantized with AA [Ber10|. More formally, we claim the following.
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Claim Consider a random instance of DP(n,k,w) in the unique decoding regime. For all n’,w’, N € N

!

satisfying 4(3’,) / <(w1f]/2) (nz/u/_/g,» < N< (g'/) /gn/*’ﬂ there is no (classical or quantum) oracle A such that

the resulting quantum ISD algorithm has a better runtime than quantum Prange.

The upper bound on N is imposed by the ISD framework itself (to guarantee the existence of N codewords
in the subinstance), and the lower bound is imposed by the construction of the code sieving methods
from |GJN23, DEEK24] (to guarantee that NN.S(n’,w’, N) has N solutions).

The claim is justified as follows. A trivial lower bound on the expected runtime of any oracle Ais T4 > N,
since A is required to output NV solutions. For p; and py as defined in Section [2] the expected runtime of any

such quantum ISD algorithm is thus Q(N/‘ /plpg) = Q<\/N (Z)/(("_",)W'—k)), which, for fixed n/, w’, is

w—w’

minimal when N equals its lower bound. Omitting constant factors, the runtime is thus lower bounded by

. (1))

oy s () )z \ () () () 2o

(1)

By numerically minimizing Equation[1} we obtain that, for all allowed n’, w’, this is never better than the run-

time of quantum Prange (which is 4/ (,Z) / (";k)) In fact, the optimal values obtained through numerical opti-

mization essentially correspond to the values characterizing quantum Prange: n’ = k and w’ = 0. Our Python
script is available at https://github.com/lynnengelberts/quantum-sieving-for-codes-public.git.

Remark 1 (Comparison with the classical setting). The same argument does not apply to classical sieving-
based ISD, which is non-surprising since [DEEK24] have shown it outperforms classical Prange. There, a
trivial lower bound on the runtime of the oracle A would again be N, giving a (possibly non-tight) lower
bound on the time complexity of classical sieving-based ISD of N/(pip2). Unlike in the quantum setting,
the dependency (and, in particular, the lower bound) on N disappears as it is canceled out by py, namely

N/(pip2) = (1)/ ((S:Z,)W/*k) since po is linear in N.

3.2 On (Failed) Attempts to Overcome the Limitations

The previous subsection shows the limitations of quantum sieving-based ISD and implies that the framework
should be adapted to outperform quantum Prange. Specifically, the main bottleneck in quantum sieving-
based ISD appears to come from the lower bound on the output size N of the sieving subroutine, since the
factors T4 and po in the expected runtime T4 /,/p1p2 of a quantum ISD algorithm both depend on N. Here,
we present two approaches that potentially allow us to overcome these limitations and explain why neither
of them works.

Approach 1: From Pairs to Tuples. Inspired by lattice-based cryptanalysis, an idea to obtain a smaller
lower bound on N is to use t-tuples in the sieving subroutine for ¢ > 2. That is, the sieving algorithm is
instructed to find (xp,...,x;) € L' satisfying |x1 +. ..+ x¢| = w’. We refer to those tuples as t-solutions and
observe that, for ¢ = 2, we obtain the original sieving algorithm in which the algorithm searches for pairsE]

Consider a quantum ISD algorithm invoking A to obtain Ny t-solutions to DP(n’, k,w') and uses ampli-
tude amplification. We keep the meaning of p1, po and T4 from Section [2] and, to highlight that ps depends
on the output size Ny, we write po = pa2(Ny) = Nyg2. The expected runtime of quantum ISD with a t-sieving
subroutine A is then O (TA / \/plqut). We consider that A is constructed similarly to the 2-tuple setting: in
each iteration 4, it aims to find N; t-solutions given a list of N; independent and uniformly random vectors
from ]Fg/ of weight w’. Writing p® for the probability that a ¢-tuple of independent and uniformly random
vectors in F of weight w’ forms a t-solution, the expected number of t-solutions in the output list is then
given by pr(t). To ensure that, on average, there exist at least NV; t-solutions in the output list, N; needs
to satisfy Nttp(t) > N;. We obtain the following, and remark that the assumption seems reasonable.

Corollary 2 (A lower bound on quantum t¢-sieving ISD). Assume that the runtime of any t-sieving
algorithm is lower bounded by the optimal runtime of 2-sieving. Consider a quantum ISD algorithm with the
aforementioned t-sieving algorithm as oracle A. The expected runtime of this algorithm is 2(1/v/p1gap?).

3 The intuition comes from tuple-sieving algorithms (e.g., [KMPM19|) which consider ¢ > 2 to reduce the lower bound on N.
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By Section[3.] the latter is never better than quantum Prange, from which we can conclude that quantum
ISD using t-sieving (with list size N¢) does no better than quantum Prange for all ¢t > 2.

Proof. There are two cases. First, suppose that N; < 1 /p(2). By the assumption, the runtime T4 of any
t-sieving algorithm is at least 1/p(®) (since this is a lower bound on the output size of a 2-sieving algorithm),
so the overall runtime is lower bounded by T'4/v/p1g2 Nt > NN > i ® On the other hand, if

(2) / / o > —— L
Nt > 1/17 ) then T.A/ plQQNt > Nt/ P1G2 > \/m smce TA > Nt- a

Approach 2: Varying List Sizes. The lower bound on the output size N of the sieving subroutine comes
from maintaining the same list size N throughout each iteration in the sieving algorithm. A natural question
to ask is whether it would be possible to variate the list size in order to overcome this intrinsic limitation.
We propose the following approach for varying list sizes. Suppose that for given parameters n’, w’ there
exists a (classical/quantum) sieving subroutine of the ISD framework that (for some V;) iteratively applies
a sieving step of the following form. It starts by sampling a list £y of Ny vectors of weight w’. In iteration i,
the algorithm finds solution pairs (x1,x2) € £2, satisfying |x; +x2| = ', yielding a new list £; 11 of expected

’ n —w'

size Njy1 1= pr7 where p := (wqf/g) ( w2 )/(Zl,) is the probability that a random pair is a solution pair
(previously denoted by p(2))

The expected list size in the consecutive steps of the sieving algorithm can then be described via the
recursive relation: N;;1 = NiQp. It follows that N;,1 = NZ'p? !, and writing 7 + 1 := n’ — k, the size of the
output list N, satisfies N,41 = Nfrp?_l. We now sketch the proof that there is no choice of Ny, ..., Nyy1
for which this algorithm yields runtime better than that of quantum Prange, denoted by T™.

We start by observing that the overall runtime 7' of this algorithm is of order Tiax/v/P1g2Ny+1, where
Tinax is the maximum among the runtimes of the iterations, and p; and ps = ¢a N1 are the probabilities from
Section 2| (Note that the output size N,11 was previously denoted by N.) Since Tiax > Nmax := max;>1 V;,

we have T' > Nyax/v/P1¢2N,+1. By Section we have (1/,/pp1qz2) > T* for all allowed n/, w’. To complete
the proof, it thus suffices to show that there is no choice of Ni,..., Nyy1 such that Nyac/v/Nrp1 < 1/4/p,

which can be shown by considering the two cases N,11 > ;1) and Nyqq < ]lj separately.

4 Quantum Algorithms for NNS and Code Sieving

In the introduction, we also asked how well quantum analogs of code sieving perform. We present the first
quantum algorithms for NNS and code sieving by combining the classical sieving algorithm from [DEEK24|
with techniques from quantum lattice sieving |Laal5,|CL21]. The quantum speed-ups we obtain align with
the speed-ups observed in the state-of-the-art of lattice cryptanalysis. Although Section [3] shows that using
these algorithms as oracle A does not result in quantum ISD algorithms that perform better than quantum
Prange, the quantum algorithms for NNS and code sieving may be of independent interest.

Recall that code sieving repeatedly solves an NNS problem (Problem . The complexity of the best
known algorithms for this NNS problem, and thereby the overall complexity of code sieving, depends on
the cost of a subroutine that we call FindSolutions which, in short, searches for ‘solutions’ in a structured
subset of the list £. Similar to the lattice setting, our quantum algorithms aim to speed up this subroutine.

Our Quantum Algorithms. Our first quantum algorithm for FindSolutions is a straightforward application
of Grover, and serves as a baseline for comparison. Our other quantum algorithms are a quantum-walk
algorithm and a variant thereof, where we apply the sparsification technique from |CL21| to end up with
a different (and better) balance of the complexity parameters. Both quantum-walk algorithms make use of
locality-sensitive filtering (LSF) from |[BDGL16| to obtain a speed-up over Grover in the search for ‘solutions’.
We illustrate the asymptotic performance of the resulting quantum algorithms for NNS (and, thus, for
code sieving) using numerical resultsE] We compare the runtime and corresponding memory for the hardest
instances (i.e., those weights yielding the worst asymptotic runtime) of the following algorithms: (1) the
classical version from [DEEK24]|, (2) our version using Grover, (3) our version using a quantum walk and a
second layer of LSF, and (4) the latter with sparsification. Our results are presented as follows:
— Figure 1(a) shows the asymptotic runtime of the four algorithms, which is obtained by calculating the
asymptotic runtime in 100 equidistant values of w := w/n ranging in [0,0.5), where n, w are parameters
of Problem [2] and w is chosen such that there is a unique solution to the problem on average.

4 Note here that taking N; to be the same for all iterations, results in the original sieving algorithm.
5 Due to space constraints, we omit the asymptotic analysis.
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— Figure 1(b) specifies the asymptotic runtime for the hardest instances, i.e., those values of w for which the
runtime curves in Figure 1(a) reach their peak. It also contains the corresponding memory complexity.
All numerical results were obtained using Python script available in the aforementioned repository.

Time complexity of NNS and code sieving for varying weight

—— Classical
0.12 - Grover
QW + LSF
QW+ LSF + Spars. | |Algorithms t mc  Mmq  MQRACM TMQRAQM
0-101 CLASSICAL 0.132 0.094 - - -
& GROVER" 0.120 0.094 0 0.026 -
3 0081 QW+ LSF* 0.118 0.094 0.024 0.031 0.024
-% 006 QW+LSF+SpPaArs.”[0.117 0.094 0.023 0.036 0.023
o Fig. 1(b): The exponents of the asymptotic runtime (i.e., ¢ s.t.
© 0.04 runtime is 2“”"(")) and memory exponents for those w where the
runtime curves in Fig. 1(a) reach their peak. Our algorithms are
0.02 A indicated with ‘«’. Here mc, mqg, mQracm, mQragm correspond
to classical memory, quantum memory, QRACM, and QRAQM,
0.00 A respectively.
0.0 01 0.2 03 0.4 05

w s.t. weight is w=wn

Fig. 1(a): Comparison of the asymptotic runtime of the four
algorithms solving an NNS instance with w = w/n.

Remark 3. We present the results for NNS(n,w, N), but remark that when used in the ISD framework,
n,w should be replaced by n’,w’. Moreover, the number 0.132 for CLASSICAL in Figure 1(b) refers to the
runtime of the classical sieving algorithm from |[DEEK24|, and is not explicitly stated in their paper.

5 Conclusion

Given the quantum speed-ups in lattice-based cryptanalysis and the recent introduction of sieving techniques
for codes in the classical setting, it was essential to evaluate the impact of sieving-based techniques on the
security of code-based schemes from a quantum perspective. Moreover, our new quantum algorithms for the
NNS problem in the Hamming metric may be of independent interest and have the potential to be used
in future algorithms for the decoding problem, for instance, within new sieving algorithms that overcome
the limitations addressed in this work or within algorithms with completely different approaches. Identifying
specific applications remains an open question for future work. We thus consider this work to provide valuable
insights into the intrinsic limitations of the currently proposed sieving approach, which potentially suggests
directions for future improvements.
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