
On Proving Security against Differential

Cryptanalysis

Nicky Mouha

National Institute of Standards and Technology, Gaithersburg, MD, USA
xnicky@mouha.bex

Abstract. This submission to the “Conference for Failed Approaches
and Insightful Losses (CFAIL)” revisits ePrint 2013/328. In its origi-
nal version, this ePrint paper professed a proof that the Salsa20 stream
cipher resists differential cryptanalysis. Subsequently, the paper was up-
dated to point out an incorrect assumption in the proof. The title was
also updated to start with the word “towards,” which is standard cryp-
tographer’s speak for a failed approach. Despite the fact that the bug
was never fixed and the manuscript was never published, it nevertheless
went on to become one of the standard techniques to evaluate the resis-
tance of a cipher against differential cryptanalysis. We will not only give
insight into where the approach went wrong, but also explain why it is
not easy to fix. Our goal is to give a new understanding of the value and
limitations of proofs and experimental results, and suggest some lessons
learned for both designers and cryptanalysts.

Keywords:CFAIL, Differential Cryptanalysis, ARX, Salsa20, SAT/SMT
Solver

Foreword. The research environment has an impact on the results that are

published. Typical papers may require about three to six months of work, and

should be ambitious but reasonable. This story is different. We set out to attain a

seemingly impossible goal, fully aware that the road is bumpy and full of pitfalls.

But after more than a year of painstaking effort, it appears that we somehow

finally got there. Let’s write up the results, put the paper on ePrint, and submit

it to a reputable conference.

The review comments may not be surprising: very laudable, but also very

skeptical. But perhaps not too difficult to address: a few months of extra work

should get us enough experimental support to convince the reviewers that the

assumptions in the paper are correct. And so, we set up a large number of ex-

periments, and one by one, they bolster our belief that the sky is clear, and that

no clouds are to be found.

The last experiment on the list seems like a mere formality. But it isn’t:

the very last experiment actually shows that some of the main assumptions are

incorrect. What do we do now? Attempts to fix the problem come up short,

and the deadline to resubmit to another conference is looming... It seems that

the only honest option left, is to admit the problem and describe it as clearly

as possible. Let’s update the ePrint paper and resubmit. The review comments,

unsurprisingly, are all negative: this was a failed approach...

1 Introduction

For symmetric-key cryptographic algorithms, a basic design criterion is security
against linear [22] and differential [6] cryptanalysis. In its most basic form, dif-
ferential cryptanalysis is related to the question: “If we flip some bits at the
input of the algorithm, what happens to the bits at the output?”

In the case of, let’s say, a block cipher with a secret key K (drawn uniformly
at random), if we can somehow “predict” changes in the ciphertext C when we
flip some bits in the plaintext P , this would violate one of the most fundamental
security assumptions: given any number of plaintexts and their corresponding
ciphertexts, it should not be possible1 to come up with the ciphertext corre-
sponding to a “new” plaintext.

When this block cipher is used in a simple authentication scheme where the
“challenge” is the plaintext, and the “response” is the corresponding ciphertext
(encrypted under the secret key K), the security of the scheme crucially depends
on this property: if the challenge is “fresh” (never used before), then the response
should be unknown to anyone who doesn’t possess K.

Despite the fact that security against differential cryptanalysis is so impor-
tant, it may seem surprising that differential cryptanalysis is often one of the
most effective attacks against symmetric-key cryptographic algorithms. Focus-
ing, without much loss of generality, on the case of a block cipher, we see that
the problem is twofold:

– For a b-bit block size, the number of non-zero plaintext differences is 2b − 1,
which makes it clearly infeasible to explore all differences during the de-
sign phase (e.g., b = 128 in the case of the Advanced Encryption Standard
(AES) [29]). The designer may therefore explore only a subset of these differ-
ences (e.g., differences in only one bit, or differences of a specific structure).
But this often leaves the block cipher open to attacks by other “cleverly
chosen” plaintext differences.

– For a specific plaintext difference ΔP = P ⊕ P ′, it’s often not a straight-
forward task to determine if there’s a ciphertext difference that occurs more
often than we would expect for an ideal block cipher. We will need, on aver-
age, 2a pairs of plaintexts with difference ΔP to find a cipertext difference
that occurs with a probability of 2−a or higher, which is infeasible to do
experimentally even for relatively small values of a. Designers will therefore
use some theoretical estimates based on certain assumptions, but there is a
discrepancy when the assumptions do not hold in practice. Also, the prob-
abilities often depends on the secret key K, which further complicates the
analysis.

To illustrate the point, we give examples of two well-known algorithms with
vulnerabilities to differential cryptanalysis:

1 More correct would be to say “infeasible”: for example, any adversary can simply
guess the secret key K and succeed. It is assumed that adversaries are computation-
ally limited, and that such attacks can only succeed with a negligible probability.

2

TEA. Wheeler and Needham’s Tiny Encryption Algorithm (TEA) [35] is a
block cipher with a 128-bit key K. This key K consists of 32-bit subkeys K0,
K1, K2 and K3. As Kelsey et al. [19] point out, we can flip the most significant
bit (MSB) of both K0 and K1, without affecting the encryption algorithm. The
same observation holds for the MSBs of both K2 and K3, which can be flipped
without any effect. Note that this effectively reduces the key size by two bits:
for every key, there are three other equivalent keys. This lead to an attack on
Microsoft’s Xbox gaming console, where TEA was used as a hash function [33].

MD5. Rivest’s Message Digest 5 (MD5) hash function uses the Merkle-Damg̊ard
paradigm [14, 24], which turn a collision-resistant compression function into a
collision-resistant hash function. The compression function of MD5 consists of
four rounds, each round consisting of 16 steps. The step function of MD5 is
almost identical to that of its predecessor MD4. One major change that was
introduced, is that each step now adds in the result of the previous step. As
shown by den Boer and Bosselaers [7], this significantly weakens the compression
function of MD5 against differential cryptanalysis. In an average of four minutes
on a 33MHz 80386-based computer, they exploit this property to find a collision
for MD5’s compression function, thereby violating the Merkle-Damg̊ard design
principle.

2 The Wide Trail Design Strategy and AES

The aforementioned vulnerabilities of TEA and MD5 are obvious when we see
them, and easy to fix if the designers knew about them. Hindsight is a wonderful
thing, but what we really need is a systematic approach to avoid these problems.
The Wide Trail Design strategy revolutionized the field by providing such an
approach, and was used to design the AES block cipher.

Before we explain the Wide Trail Design Strategy, we introduce some termi-
nology:

– A difference ΔX is the subtraction of two values: ΔX = X ′ −X . We will
assume that the subtraction is performed in a finite field with 2n elements,
so that subtraction is the same as an exclusive OR (XOR). This difference
is therefore also known as an XOR difference.

– A differential (ΔX,ΔY) is an ordered pair consisting of an input difference
ΔX and an output difference ΔY .

– The differential probability is the probability that the differential holds for
a given cipher. Unless explicitly mentioned otherwise, this probability is
assumes that inputs (X,X ′) and the key K are drawn uniformly at random,
while satisfying X ⊕X ′ = ΔX .

– A trail (also known as a characteristic or a path) is tuple of differences
(ΔX,ΔX2, . . . ,ΔXp−1,ΔY).

– The trail probability is the probability that a trail holds for a given cipher,
that is, the probability that not only the differential (ΔX,ΔY) holds, but

3

also the differences ΔX2, . . . ΔXp−1 for certain intermediate values that
appear in the cipher.

– The trail weight (resp. differential weight) is the negative of the base-2 loga-
rithm of the trail probability (resp. of the differential probability). Note that
multiplying probabilities corresponds to adding weights.

– A trail (resp. differential) is valid if the trail probability (resp. differential
probability) is non-zero.

The Wide Trail Design Strategy, when applied to AES, goes as follows. AES
is an iterated block cipher, which consists of a round function that is iterated
10, 12 or 14 times, depending on the key size (resp. 128, 192 or 256 bits). Each
round consists of the following steps: an addition of a 128-bit subkey (derived
from the key), an application of sixteen 8-to-8-bit lookup tables (called S-boxes),
and a linear transformation.2

The S-box of AES has been designed to optimally resist differental cryptanal-
ysis [30]: for any non-zero differential of the S-box, the weight is at least 6.3 In
any trail, we will say that an S-box is active if it has a non-zero difference at its
input. The Wide Trail Design Strategy of AES guarantees that any four-round
trail has at least 25 active S-boxes [13].

Assuming that the trail probability can be accurately estimated by multi-
plying the probabilities of the differentials of every S-box, this means that every
four-round AES trail has a probability of at most 2−25·6 = 2−150, corresponding
to a trail weight of at least 150. The subkeys help to justify this assumption:
adding a random subkey after every round is effectively whitening the outputs
of every round, i.e., ensuring that the outputs pairs are uniformly distributed.

The lowest differential weight may be less than the lowest trail weight: this
effect is called trail clustering and happens when several trails have the same in-
put and output difference. We can analyze this effect, and confirm that although
there is some trail clustering for AES, the weight of the best trail still gives a
reasonable indication of the weight of the best differential [12].

3 Differential Cryptanalysis for ARX Ciphers

An increasing number of ciphers are built using just three operations: addi-
tion modulo 2n, bitwise rotation, and XOR. Collectively, these are known as
Addition-Rotation-XOR (ARX) ciphers. Although ARX ciphers have a very fast
performance in software, they cannot rely on a framework such as the Wide

2 The last round is slightly different to allow for a more efficient hardware implemen-
tation, but we will not get into the details because it does not affect the security
against differential cryptanalysis. To avoid that an adversary can trivially undo the
last round, there is an additional subkey addition at very end of the cipher.

3 It was long thought that no 8-to-8-bit S-box exists where every differential has a
weight of at least 7. However, Dillon [9] has cast some doubt on this by constructing
a 6-to-6-bit S-box where every differential has a weight of at least 5. Constructing a
better 8-to-8-bit S-box against differential cryptanalysis, or proving that none exist,
is still an open problem.

4

Trail Design Strategy to analyze their security against differential cryptanalysis.
Until quite recently, their security has not been well-understood. For example,
even the SHA-3 finalist Skein [15] was designed based on the “pre-differential-
cryptanalyis” notion of full diffusion, meaning that every input bit affects every
output bit. As we explained in Sect. 1, full diffusion is insufficient to claim re-
sistance against differential cryptanalysis.

The bitwise rotation and XOR operations on n-bit words are linear operations
in a finite field of 2n elements, and therefore bit differences propagate with
probability one. But this is not the case for the addition modulo 2n. It was not
until 2001 that Lipmaa and Moriai [21] studied the differential probability of
just one addition operation.

Let xdp+(α,β → γ) be the XOR-differential probability of addition modulo
2n, with input differences α and β and output difference γ. Lipmaa and Moriai
proved that the differential (α,β → γ) is valid if and only if:

eq(α ≪ 1,β ≪ 1, γ ≪ 1) ∧ (α⊕ β ⊕ γ ⊕ (β ≪ 1)) = 0n , (1)

where

eq(x, y, z) := (¬x ⊕ y) ∧ (¬x⊕ z) , (2)

and 0n is an n-bit all-zero bit string.
For every valid differential (α,β → γ), let us define the weight w(α,β → γ)

of the differential as follows:

w(α,β → γ) := − log2(xdp
+(α,β → γ)) . (3)

Lipmaa and Moriai proved that the weight of a valid differential can then be
calculated as:

w(α,β → γ) := h∗(¬eq(α,β, γ)) , (4)

where h∗(x) denotes the number of non-zero bits in x, not including the MSB.
Easy enough, right? So given a trail, can’t we just add the weights of all

the modular additions, and use this to estimate the weight of the trail? Not so
fast! Mouha et al. point out in [27] that such an approach can quickly run into
problems.

More specifically, they recall a result by Hong et al. [18] on the differential
cryptanalysis of XTEA. Let us use (i, j, ...) to denote an XOR difference of
2i ⊕ 2j ⊕ Hong et al. consider a three-round differential trail (δ, 0) → (δ, 0)
where δ = (31, 22, 13, 4). In the third round of the trail, there are two consecutive
additions modulo 232, as shown in Fig. 1.

Using Lipmaa and Moriai’s formula for each addition, we find w(δ, 0 → δ) = 3
and w(δ, δ → 0) = 3. Simply adding the two weights would lead to a weight of
3 + 3 = 6, but Hong et al. noticed some trail clustering, and estimated the
weight to be 4.755. Mouha et al. [27] devised a method to accurately calculate
the exact weight of differentials of a three-input addition, only to realize that the
commutative property of the addition would have given the result immediately
for Hong et al.’s XTEA trail: w(δ, δ → 0) + w(0, 0 → 0) = 3 + 0 = 3.

5

()

(31, 22, 13, 4)

(31, 22, 13, 4)

()

()

()

(31, 22, 13, 4)

(31, 22, 13, 4)

()

2−3

2−3

2−3

1

(31, 22, 13, 4)

Fig. 1. A differential involving two additions modulo 232 that appears in a trail by Hong
et al. [18] for three-round XTEA. As pointed out by Mouha et al. [27], assuming that
the differential probabilities are independent and therefore multiplying the differential
probabilities of each addition, gives an incorrect probability of 2−3 · 2−3 = 2−6 (shown
left). Using the commutative property of the addition, we get the correct differential
probability 2−3·1 = 2−3 (shown right). The notation (i, j, ...) denotes an XOR difference
of 2i ⊕ 2j ⊕

Rather than abandoning the approach of adding the weights of all the addi-
tions to estimate the trail weight, ePrint 2013/328 [26] argues that the problem
might just be the structure of the ARX cipher, rather than the approach. They
point out that the Salsa20 stream cipher [5] has an interesting property: unlike
other ARX ciphers such as TEA, XTEA and Skein, the output of an addition is
never directly used as the input of another addition.4 This might give us some
hope that Salsa20 avoids the aforementioned pitfall. But before we proceed, we
should first give a description of Salsa20.

Although the following sections are relatively self-contained, the explanation
will get a bit technical: our goal is to show that the shortcoming of the approach
is not at all obvious, and not captured by any of the existing techniques in
literature. Nevertheless, we will do our best to help the reader through the
following sections, and hope that any lost readers will rejoin us in Sect. 8 for a
philosophical discussion.

4 Description of Salsa20

Salsa20 is a stream cipher designed by Bernstein [5]. The originally proposed
Salsa20 consists of R = 20 rounds. Later, Bernstein proposed two reduced-
round variants: Salsa20/8 and Salsa20/12, consisting of 8 and 12 rounds respec-
tively [3]. For the sake of clarity, the 20-round Salsa20 is sometimes referred to
as Salsa20/20.

4 To the best of our knowledge, LEA [17] is the other ARX cipher that has this
property.

6

The Salsa20 stream cipher was submitted to the ECRYPT eSTREAM com-
petition. At the end of the competition, the Salsa20/12 cipher was included in
the eSTREAM portfolio. Although an attack was shown on Salsa20/8 [1], there
are currently no known attacks on either Salsa20/12 or Salsa20/20.

Salsa20 supports both 128-bit and 256-bit keys. When using 128-bit keys, we
first double the key to form a 256-bit key. Salsa20 operates on 32-bit words. The
Salsa20 core function converts a 256-bit key (k0, k1, k2, k3, k4, k5, k6, k7), a 64-bit
counter (t0, t1), a 64-bit nonce (v0, v1), and four 32-bit constants (c0, c1, c2, c3)
into a 512-bit output. The inputs are mapped to a two-dimensional square matrix
as follows:

x0
0 x0

1 x0
2 x0

3

x0
4 x0

5 x0
6 x0

7

x0
8 x0

9 x0
10 x0

11

x0
12 x0

13 x0
14 x0

15

←

c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

. (5)

A Salsa20 round consists of four parallel quarterround functions, defined in
Fig. 2:

(yr0 , y
r
4, y

r
8, y

r
12) ← quarterround(xr

0, x
r
4, x

r
8, x

r
12) , (6)

(yr5 , y
r
9, y

r
13, y

r
1) ← quarterround(xr

5, x
r
9, x

r
13, x

r
1) , (7)

(yr10, y
r
14, y

r
2, y

r
6) ← quarterround(xr

10, x
r
14, x

r
2, x

r
6) , (8)

(yr15, y
r
3, y

r
7, y

r
11) ← quarterround(xr

15, x
r
3, x

r
7, x

r
11) , (9)

followed by a matrix transposition:

∀i, j : 0 ≤ i < 4, 0 ≤ j < 4 : xr+1

4i+j ← yr4j+i . (10)

After R rounds, the output is calculated by a feed-forward operation:

∀i : 0 ≤ i < 16 : zi ← x0
i + xR

i mod 232 . (11)

Note that the Salsa20 specification [5] defines both a columnround and a rowround
function. In this paper, we include a matrix transposition as part of every round
function. This simplifies the analysis: because of our definitions, every round of
Salsa20 is identical.

5 Finding Differential Trails using SAT Solvers (ePrint
2013/328)

The main insight of ePrint 2013/328 [26] is that the differential trail of a certain
weight can be described as the solution of a Boolean formula for any given ARX
cipher. These Boolean formulas can then be converted into conjunctive normal
form (CNF), and solved using a Boolean Satisfiability Problem (SAT) solver.

We are interested not only in the solutions that are given by the SAT solver,
but even more in the cases where the SAT solver does not return a solution:

7

≪ 7

≪ 9

≪ 13

≪ 18

a0 a1 a2 a3

b0 b1 b2 b3

Fig. 2. The Salsa20 quarterround function is defined as: (b0, b1, b2, b3) ←

quarterround(a0, a1, a2, a3)

a complete SAT solver will only output unsatisfiable when no solution exists,
thereby proving that no trail exists with the given constraints.

To make the modeling of the problem easier, we will use a Satisfiability
Modulo Theories (SMT) solver: this allows us to write expressions involving
n-bit words. Often an SMT solver is a frontend to a SAT solver.

– For every pair of n-bit input words (x, x′) of the cipher, we use one n-bit
word Δx in the SMT solver to represent the XOR differences between the
corresponding inputs Δx = x⊕ x′.

– Additional n-bit variables may be needed to represent the XOR differences
of the outputs of the addition, XOR and rotate operations. These are intro-
duced when required.

– For every XOR and every bit rotation in the ARX cipher, we apply the same
XOR and bit rotation to the XOR differences. These hold with probability
one, and are therefore not included in the weight calculation.

8

– For every addition modulo 2n in the ARX cipher, we use (1) and (2) to ensure
that the input and output differences correspond to valid differentials of the
addition modulo 2n. These equations ensure that either all differentials are
valid, or SAT solver will output unsatisfiable.

– Additionally for every addition modulo 2n of the ARX cipher, we include
(4) to calculate the weight of the differential. This formula only applies to
valid differentials, but this is ensured by the previous equations.

– The weights of all these differentials are summed together. We specify that
the corresponding sum is at most W , which is the maximum weight of the
differentials that are considered by our search program.

– We specify that at least one XOR input difference is non-zero. Otherwise,
we would find the following trivial differential: if there is no difference in the
inputs, there is no difference in the outputs with probability one.

The execution time of the SAT solver is difficult to predict. Experimentally,
we found that the SAT solver only terminates within a reasonable amount of
time for a small number of rounds. But if the number of rounds is too small,
we obtain low-weight trails that don’t help much to bound the weight of trails
for the full-round cipher. For Salsa20, we focused on three-round trails, as these
were the longest trails that we could search within a reasonable amount of time.

6 Differential Trails for Three-Round Salsa20

Salsa20 has 16 input variables: x0
0, x

0
1,..., x

0
15. For each of these, we introduce

a 32-bit variable to represent the XOR difference in the SMT solver. We can
then straightforwardly apply the framework of Sect. 5 to find differentials for
any number of rounds of Salsa20. However, there is one additional issue that
should be taken into account.

For any number of rounds of Salsa20, there exist differential trails that have
probability one. In particular, if ∀i : 0 ≤ i < 16 : xr

i [31] are flipped, then ∀i :
0 ≤ i < 16 : xr+1

i [31] will be flipped as well with probability one. This property
was noted by several cryptographers, including Robshaw [4], Wagner [34] and
Hernandez-Castro et al. [11].

As already pointed out by Bernstein [4], the use of the four 32-bit constants
(c0, c1, c2, c3) ensures that these probability-one trails will never occur as an input
to the Salsa20 round function. To avoid finding these probability-one trails in
our search program, we arbitrarily specify that Δx0

0[31] = 0. This also halves
the number of trails found by our program: for every trail found, there exists
another trail where the differences in every MSB are flipped.

6.1 Trails and Differentials

The results found for three-round Salsa20 in ePrint 2013/328 [26] are as follows.
They can be reproduced using the software toolkit that is available online [25].

The tool returns unsatisfiable for trails with a weight below 18, proving that
no solutions exist that satisfy the Boolean formula. The tool is used to enumerate

9

all 6,761,988 three-round Salsa20 trails with weights up to 26. For each of the
trails found, no combination of input and output differences occurs more than
once. Therefore, they correspond to 6,761,988 three-round Salsa20 differentials.

A straightforward modification of the tool quickly find all trails that belong
to a certain differential. Out of all 6,761,988 three-round Salsa20 differentials,
only 2,604 differentials contain more than one trail. The results are shown in
Table 1: for all the differentials that we have found, only a very small fraction
contains more than one trail, and this increases the weight of the differential
only slightly.

Still, this represents a problem if we want to bound the differential proba-
bility. For some of the trails that we found of weight 24 and higher, the trail
probability is not the same as the differential probability.

Table 1. For three rounds of Salsa20, we give the number of trails with weights up
to 26, which we find in this case is the same as the number of differentials. Some of
these differentials consist of more than one trail: we show for how many differentials
this holds and estimate the weight of the best differential in every group.

Weight of Corresponding # Differentials with Weight of Best
Trail # Differentials Multiple Trails Differential

18 8 0 18
19 112 0 19
20 872 0 20
21 5,080 0 21
22 24,696 0 22
23 105,128 0 23
24 404,272 16 23.91
25 1,435,784 264 24.68
26 4,786,036 2324 25.68

Total 6,761,988 2604

We give two examples of differentials with more than one trail: Differential
A and Differential B. From now on, let us use the following notation to denote
the XOR input and output differences of a differential:

x0
0 x0

1 x0
2 x0

3

x0
4 x0

5 x0
6 x0

7

x0
8 x0

9 x0
10 x0

11

x0
12 x0

13 x0
14 x0

15

→

x3
0 x3

1 x3
2 x3

3

x3
4 x3

5 x3
6 x3

7

x3
8 x3

9 x3
10 x3

11

x3
12 x3

13 x3
14 x3

15

(12)

where all XOR differences will be denoted as hexadecimal values.

First, we consider Differential A:

00000420 00001080 00200000 01000000

84021000 00021000 02000000 04000000

00084000 01004000 00000000 00000000

01080000 88200000 00001001 00020000

→

00000000 00000000 00000000 00000000

00001000 40020000 00000000 80000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

.

10

In Fig. 3, we show the two trails that correspond to Differential A: a trail
of weight 25 (left), as well as one of weight 27 (right), resulting in a differential
weight of − log2(2

−25 + 2−27) = 24.67. No other trails exist for Differential A.
In the next section, we will explain that the weight of the trail of Fig. 3 (right)

does not correspond to the sum of the weights of every addition of the ARX
cipher. We will perform a more accurate estimate to obtain a trail weight of 26,
and therefore the differential has an estimated weight of − log2(2

−25 + 2−26) =
24.42

Also note that the best found trail for Differential A cannot be obtained by
a greedy search strategy: for the trail of Fig. 3 (left), the output difference after
every addition is not always the one with the highest probability.

We then consider Differential B:

00000010 00000840 00040100 80080000

00000800 21000000 84000000 00000100

00002000 80042010 80000010 00001000

00000000 00000042 00000802 00000000

→

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00040000 80000000 00020010 00000000

00000000 00000000 00000000 00000000

.

Differential B is composed of trails with estimated weights of 24, 28 and 32, as
well as trails of a higher weight. In Fig. 4, we only show the trail with estimated
weights of 24 and 28. We again find that the estimated weight of the trails is not
equal to the sum of the estimated weights of every component. A more accurate
theoretical estimate, which will be performed in the next section, will assign to
these three trails the estimated weights of 24, 27 and 30 respectively.

6.2 Probability of the Trails

As already mentioned in the previous section, the commonly made assumption
that the probability of a differential trail is equal to the multiplication of the
probabilities of each operation is not always correct.

To understand the particular problem that we found, we use the concept of
signed differences Δ±x. These split up the XOR differences into three possible
cases:

– x[i] = x′[i], which is denoted as Δ±x[i] = 0,
– x[i] = 0, x′[i] = 1, which is denoted as Δ±x[i] = +1,
– x[i] = 1, x′[i] = 0, which is denoted as Δ±x[i] = −1.

Note that a signed difference Δ±x corresponds to exactly one XOR difference
Δx:

Δx =
n−1
�

i=0

|Δ±x[i]| · 2i , (13)

as well as to exactly one additive difference Δ+x:

Δ+x =

n−1
�

i=0

Δ±x[i] · 2i mod 2n . (14)

11

≪ 7

≪ 9

≪ 13

≪ 18

Δx1

15

(24, 19) (31, 27, 26) (12)(17)
Δx1

3
Δx1

7
Δx1

11

() (31) ()()
Δx2

15
Δx2

12
Δx2

13
Δx2

14

(17, 12)

(18, 17)

(31)

(31)

+1

≪ 7

≪ 9

≪ 13

≪ 18

Δx0

5

(24, 14) (31, 27, 21) (12, 7)(17, 12)
Δx0

9
Δx0

13
Δx0

1

() (31, 27, 26) ()()
Δx1

5
Δx1

6
Δx1

7
Δx1

4

(17, 7)

(17, 12)

(31, 26)

(31, 26)

-1

+1

+0

≪ 7

≪ 9

≪ 13

≪ 18

Δx0

5

(24, 14) (31, 27, 21) (12, 7)(17, 12)
Δx0

9
Δx0

13
Δx0

1

() (31, 26) ()()
Δx1

5
Δx1

6
Δx1

7
Δx1

4

(17, 7)

(18, 17, 12)

(31, 26)

(31, 26)

≪ 7

≪ 9

≪ 13

≪ 18

Δx1

15

(24, 19) (31, 26) (12)(17)
Δx1

3
Δx1

7
Δx1

11

() (31) ()()
Δx2

15
Δx2

12
Δx2

13
Δx2

14

(17, 12)

(17)

(31)

(31)

Fig. 3. Differential A (defined in Sect. 6.1) is composed of exactly two trails, one of
weight 25 (left), and another of weight 26 (right). For the trail on the right, we use
‘+1’ and ‘-1’ to denote the increase or decrease of weight, compared to the trail on the
left. In Sect. 6.2, we show that not all operations are independent for the trail on the
right: this explains why one addition has ‘+0’ instead of ‘+1’. Note that only part of
the trails are shown.

12

≪ 7

≪ 9

≪ 13

≪ 18

Δx0

10

(11, 1) (18, 8) (31, 26)(31, 4)
Δx0

14
Δx0

2
Δx0

6

() (18, 14, 13) ()()
Δx1

10
Δx1

11
Δx1

8
Δx1

9

(26, 4)

(31, 5, 4)

(18, 13)

(18, 13)

≪ 7

≪ 9

≪ 13

≪ 18

Δx1

0

(11, 6) (18, 14, 13) (31)(4)
Δx1

4
Δx1

8
Δx1

12

() (18) ()()
Δx2

0
Δx2

1
Δx2

2
Δx2

3

(31, 4)

(5, 4)

(18)

(18)

+1

+1

+0

+1

≪ 7

≪ 9

≪ 13

≪ 18

Δx0

10

(11, 1) (18, 8) (31, 26)(31, 4)
Δx0

14
Δx0

2
Δx0

6

() (18, 13) ()()
Δx1

10
Δx1

11
Δx1

8
Δx1

9

(26, 4)

(31, 4)

(18, 13)

(18, 13)

≪ 7

≪ 9

≪ 13

≪ 18

Δx1

0

(11, 6) (18, 13) (31)(4)
Δx1

4
Δx1

8
Δx1

12

() (18) ()()
Δx2

0
Δx2

1
Δx2

2
Δx2

3

(31, 4)

(4)

(18)

(18)

Fig. 4. Differential B (defined in Sect. 6.1) is composed of several trails. We show the
two with the lowest weight: weight 24 (left), and weight 27 (right). For the trail on
the right, we use ‘+1’ and ‘-1’ to denote the increase or decrease of estimated weight,
compared to the trail on the left. In Sect. 6.2, we show that not all operations are
independent for the trail on the right: this explains why one addition has ‘+0’ instead
of ‘+1’. Note that only part of the trails are shown.

13

Let us now revisit Differential A. In 3 (right), we find an addition with input
differences Δx1

7 = 231⊕ 227⊕ 226 and Δx1
6 = 0. Let us denote the corresponding

output difference by Δd = 231 ⊕ 226.
Every XOR difference corresponds to a set of signed differences. Not all

of these are valid for the addition operation. For example, Δ±x1
7[27] = +1,

Δ±x1
4[26] = −1 and Δ±d[26] = +1 results in a valid assignment, because 231 +

227−226 = 231+226 mod 232. However, no valid assignment exists ifΔ±x1
7[27] =

Δ±x1
7[26].

Then, we observe that Δx1
7 is reused in another addition which also imposes

the condition Δ±x1
7[27] = Δ±x1

7[26] to obtain a valid output difference. Because
this condition is already satisfied, the differential probability of this addition
increases from 2−2 to 2−1.

The same effect occurs with Differential B, as can be seen from Fig. 4. Here,
we see that the trail weight of Fig. 4 (right) can be more accurately estimated
as 27 instead of 28.

The effect is also not limited to cases where a differential consists of several
trails. Let us consider Differential C:

00000000 00000000 00000002 10000002

00000000 80000000 00000040 00000108

00000000 00000040 03000000 00200000

00000000 00000100 80002000 04000000

→

00000000 00000000 00000000 00000000

10280000 840040a2 00000040 00008100

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

.

and Differential D:

00000000 00000000 00000002 10000002

00000000 80000000 00000040 00000108

00000000 00000040 03000000 00200000

00000000 00000100 80002002 04000000

→

00000000 00000000 00000000 00000000

10280000 840040a2 00000040 00008100

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

.

Differentials C and D each contain exactly one trail, which are shown in
Fig. 5 (left) and Fig. 5 (right) respectively. As shown by Fig. 5 (left), Differential
C has a probability of 20 instead of 21 when an analysis of signed differences is
taken into account. In Fig. 5 (right), the trail with estimated weight 22 turns
out to be impossible due to a contradiction.

6.3 Experimental Verification of the Probabilities

In this section, we evaluate the probabilities of three-round Salsa20 trails exper-
imentally. We evaluate the probability of Differentials A and B of Sect. 6.1, and
Differentials C and D of Sect. 6.2.

We also selected nine differentials at random for three rounds of Salsa20, one
for every weight from 18 up to 26. These trails are chosen at random with the
following requirements: Δx0

0[31] = 0, there is only one trail per differential, and
no extra conditions appear due to modular differences. Note that for every differ-
ential where Δx0

0[31] = 0, we can obtain another differential where Δx00[31] = 1
with the same probability.

14

≪ 7

≪ 9

≪ 13

≪ 18

Δx0

10

(31, 13) (1) (6)(25, 24)
Δx0

14
Δx0

2
Δx0

6

() () (6)()
Δx1

10
Δx1

14
Δx1

2
Δx1

6

(24, 6)

(24)

()

(7, 6)

≪ 7

≪ 9

≪ 13

≪ 18

() () (6)()
Δx2

15
Δx2

12
Δx2

13
Δx2

14

(26, 24, 6)

(24)

()

(7, 6)

Δx0

10

(31, 13, 1) (1) (6)(25, 24)
Δx0

14
Δx0

2
Δx0

6

Δ±x0

10
[25] �= Δ±x0

10
[24] Δ±x0

10
[25] = Δ±x0

10
[24]

Δ±x0

10
[25] �= Δ±x0

10
[24] Δ±x0

10
[25] �= Δ±x0

10
[24]

Fig. 5. Differential C (defined in Sect. 6.2) consists of exactly one trail (left), with
a weight of 20 instead of weight 21 due to the condition Δ±x0

10[25] �= Δ±x0

10[24].
Differential D (see Sect. 6.2) also consists of one trail (right). Although a first estimate
showed that this trail had a weight of 21, we actually find that the trail is impossible
due to a contradiction for Δ±x0

10[25] and Δ±x0

10[24]. Note that only part of the trail
are shown.

We selected the sample sizes such that the difference between the experi-
mental weight and the theoretical weight will be at most 0.015 for 99% of the
samples. The results of our calculations are given in Table 2. We find that all
experimental weights pass a two-tailed binomial test with a significance level of
1%, which provides evidence that the experimental probability corresponds to
the theoretical probability.

These results were computed after taking into account trail clustering and
the improved estimate using signed differences. Without those corrections, the
experiments give examples where the experimental probability contradicts the
theoretical probability using the simple technique of Sect. 5.

7 Technical Discussion

Linearization is a common technique to find low-weight trails for ARX ciphers.
Using this technique, every addition is replaced by XOR, which results in a
linear code. Standard techniques from coding theory can then be used to find
low-weight codewords [10, 28]. Linearization is a very powerful technique, and
can find three-round Salsa20 trails of weight 18 in only a few seconds. All three-

15

Table 2. Experimental Probabilities of Differentials for Three Rounds of Salsa20. The
differentials are specified in ePrint 2013/328 [26].

Name
Theoretical Sample Expected Experimental

Difference p-value
Weight Size Value Value

Differential 18 18 234 65 536 65 800 +264 0.3033
Differential 19 19 235 65 536 65 209 -327 0.2022
Differential 20 20 236 65 536 65 496 -40 0.8774
Differential 21 21 237 65 536 65 664 +128 0.6185
Differential 22 22 238 65 536 65 667 +131 0.6102
Differential 23 23 239 65 536 65 119 -417 0.1037
Differential 24 24 240 65 536 65 725 +189 0.4615
Differential 25 25 241 65 536 65 113 -423 0.0989
Differential 26 26 242 65 536 65 848 +312 0.2237

Differential A 24.42 241 98 304 98 264 -40 0.8997
Differential B 23.81 240 74 896 75 227 +331 0.2272
Differential C 20 236 65 536 65 453 -83 0.7473
Differential D ∞ 242 0 0 0 1

round trails of weight 18 given in Table 1, can be found by linearization. However,
to find all linearized trails of weight 18 requires more than 19 days of computa-
tion on a 2.93GHz Intel Xeon X7350 processor using MAGMAs MinimumWords
function. The tool finds the same trails in only half an hour. Furthermore, lin-
earization cannot find the non-linear three-round trails that exist for weight 19
and higher. This is clearly an advantage of the tool over previous techniques.

But the tool also has some non-obvious shortcomings, which were not cap-
tured by previous techniques. For ARX ciphers, Leurent proposed conditions on
two and on three adjacent bits of one word in [20]. Although these conditions
capture the conditions that encounter in Sect. 6.1 and Sect. 6.2, they do not
detect the necessary conditions that appear in Salsa20 trails. For example, con-
sider the 32-bit addition operation a+ b = c, where Δa = 23 ⊕ 20, Δb = 0 and
Δc = 22 ⊕ 21 ⊕ 20. This differential is only valid if Δ±a[3] �= Δ±a[0]. Leurent’s
ARXtools does not detect this condition, because it only considers three adja-
cent bits. Instead, it is necessary to convert one XOR difference into a signed
difference, to allow ARXtools to detect this condition.

As we mentioned earlier, and as can be seen from Fig. 2, the output of an ad-
dition in Salsa20 is never used directly as the input of another addition. Instead,
the output of the addition of two variables is, after rotation, XORed with a third
variable. This, combined with the fact that the trails are very sparse, seems to
ensure that the output values of every operation are uniformly distributed. If
so, this would allow us add the differential weights of every operation, in order
to obtain the differential weight of a differential for the entire cipher. Although
most experiments give support that this assumption is correct, we found that
the assumption can fail in unexpected ways.

16

In the first version of the paper, ePrint 2013/328 searched for all three-round
trails below a certain weight, found that they cannot be connected to each other,
and used this to bound the differential weight of a 15-round trail, leaving a few
rounds of security margin for the 20-round Salsa20. However, the updated ePrint
paper pokes some holes in the underlying assumptions, thereby invalidating the
proof of resistance against differential cryptanalysis.

For completeness, we should point out this paper describes differential crypt-
analysis only in its most basic form, and does not consider more advanced forms
of differential cryptanalysis or other cryptanalysis techniques.

8 Philosophical Discussion

Given the novelty of organizing a “Conference for Failed Approaches and Insight-
ful Losses (CFAIL),” it might not immediately be clear what the goal of such
a conference would be. Perhaps CFAIL might be seen as a venue for unfinished
work. However, the cryptographic community already offers ample opportunities
for the early dissemination of work in progress, and it seems unlikely that such
results would be “sitting in a drawer somewhere because it never quite panned
out,” as stated in the call for papers. Furthermore, CFAIL doesn’t seem to be
aiming for goofy research or humorous articles. Our understanding of the call
for papers, is that it aims for papers that are:

– Insightful : Even if the problem is not solved, the approach should lead to
new insights.

– Well-written: A breakthrough result might be spectacular enough to overlook
bad writing, but the value in a failed approach seems to be mostly in the
write-up. If the goal is to gain new insights, it is crucial that the article is
well-written.

– Inspiring: If the approach failed, why tell the story at all? It seems important
to inspire. Perhaps the cryptographic community is at risk of not focusing
enough on long-standing open problems, fearing that papers will appear
weaker if they point out all the shortcomings.

When building a theoretical model to calculate differential probabilities, it
might seem naive in hindsight to assume that none of the assumptions would
fail in practice. However, the paper started out to challenge the opposite point
of view: it seemed that some cryptanalysts rely too much on empirical results,
which can give a false feeling of confidence.

There is inherently a limitation to the number of experiments that we can
perform, and statistical anomalies are too often brushed away. Perhaps crypt-
analysts say too quickly that they “got lucky” or “were unlucky” after running
their experiments, whereas perhaps more accurate theoretical modeling would
have explained the discrepancies.

But even if the paper was aiming too high, the SAT-solver-based technique
that it introduced to find differential trails, has gotten a life of its own. It is now
described as one of the two “standard tools” to search for differential trails [23].

17

Interesting to note, is that the technique was already used in the design of
Simon and Speck according to a recent report by the National Security Agency
(NSA) [2]. Given that Simon and Speck were designed in 2012 or earlier [32],
this would mean that the technique was already known to the NSA before it was
independently rediscovered in ePrint 2013/328.

9 Conclusion

In an attempt to prove bounds for differential trails of ARX constructions, a new
SAT-solver-based technique was developed to find differential trails in ePrint
2013/328. When applied to Salsa20, the technique didn’t find any better trails
than could be found through simple linearization, but proved the non-existence
of some trails, in the hope of proving bounds on differentials.

Experiments showed that the assumptions needed to prove these bounds
(claimed in the initial version on ePrint), fail to hold in practice (as explained in
the updated version on ePrint). It may be that proving bounds is too ambitious,
at least given the current state-of-the-art. But the technique used in the paper
became of independent interest, and has been used to find better and more
accurate trails for the design and analysis of other ciphers.

Acknowledgments. Certain algorithms and commercial products are iden-
tified in this paper to foster understanding. Such identification does not imply
recommendation or endorsement by NIST, nor does it imply that the algorithms
or products identified are necessarily the best available for the purpose.

References

1. Aumasson, J., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New Features
of Latin Dances: Analysis of Salsa, ChaCha, and Rumba. In: Nyberg [31], pp.
470–488. https://doi.org/10.1007/978-3-540-71039-4 30

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
Notes on the design and analysis of SIMON and SPECK. Cryptology ePrint
Archive, Report 2017/560 (2017), https://eprint.iacr.org/2017/560

3. Bernstein, D.J.: Salsa20/8 and Salsa20/12. http://cr.yp.to/snuffle/812.pdf

(February 2006)
4. Bernstein, D.J.: Response to “On the Salsa20 core function”. http://cr.yp.to/

snuffle/reoncore-20080224.pdf (February 2008)
5. Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In: Robshaw, M.J.B.,

Billet, O. (eds.) New Stream Cipher Designs - The eSTREAM Finalists,
Lecture Notes in Computer Science, vol. 4986, pp. 84–97. Springer (2008).
https://doi.org/10.1007/978-3-540-68351-3 8

6. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) Advances in Cryptology - CRYPTO ’90, 10th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 11-15, 1990, Proceedings. Lecture Notes in Computer Science, vol. 537, pp.
2–21. Springer (1990). https://doi.org/10.1007/3-540-38424-3 1

18

7. den Boer, B., Bosselaers, A.: Collisions for the Compressin Function of MD5. In:
Helleseth [16], pp. 293–304. https://doi.org/10.1007/3-540-48285-7 26

8. Brassard, G. (ed.): Advances in Cryptology - CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, Lecture Notes in Computer Science, vol. 435. Springer (1990).
https://doi.org/10.1007/0-387-34805-0

9. Browning, K.A., Dillon, J.F., McQuistan, M.T., Wolfe, A.J.: An APN permutation
in dimension six. Proceedings of the 9th International Conference on Finite Fields
and their Applications, Dublin, July 13-17, 2009, 518, 33–42 (2010)

10. Canteaut, A., Chabaud, F.: A New Algorithm for Finding Minimum-Weight Words
in a Linear Code: Application to McEliece’s Cryptosystem and to Narrow-Sense
BCH Codes of Length 511. IEEE Trans. Information Theory 44(1), 367–378 (1998).
https://doi.org/10.1109/18.651067

11. Castro, J.C.H., Estévez-Tapiador, J.M., Quisquater, J.: On the Salsa20 Core Func-
tion. In: Nyberg [31], pp. 462–469. https://doi.org/10.1007/978-3-540-71039-4 29

12. Daemen, J., Lamberger, M., Pramstaller, N., Rijmen, V., Vercauteren, F.: Compu-
tational aspects of the expected differential probability of 4-round AES and AES-
like ciphers. Computing 85(1-2), 85–104 (2009). https://doi.org/10.1007/s00607-
009-0034-y

13. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced En-
cryption Standard. Information Security and Cryptography, Springer (2002).
https://doi.org/10.1007/978-3-662-04722-4

14. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard [8], pp. 416–427.
https://doi.org/10.1007/0-387-34805-0 39

15. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein Hash Function Family. Submission to the NIST SHA-
3 Competition (Round 3) (2010), http://www.skein-hash.info/sites/default/
files/skein1.3.pdf

16. Helleseth, T. (ed.): Advances in Cryptology - EUROCRYPT ’93, Workshop on
the Theory and Application of Cryptographic Techniques, Lofthus, Norway, May
23-27, 1993, Proceedings, Lecture Notes in Computer Science, vol. 765. Springer
(1994). https://doi.org/10.1007/3-540-48285-7

17. Hong, D., Lee, J., Kim, D., Kwon, D., Ryu, K.H., Lee, D.: LEA: A 128-Bit
Block Cipher for Fast Encryption on Common Processors. In: Kim, Y., Lee, H.,
Perrig, A. (eds.) Information Security Applications - 14th International Work-
shop, WISA 2013, Jeju Island, Korea, August 19-21, 2013, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 8267, pp. 3–27. Springer (2013).
https://doi.org/10.1007/978-3-319-05149-9 1

18. Hong, S., Hong, D., Ko, Y., Chang, D., Lee, W., Lee, S.: Differential Cryptanal-
ysis of TEA and XTEA. In: Lim, J.I., Lee, D.H. (eds.) Information Security and
Cryptology - ICISC 2003, 6th International Conference, Seoul, Korea, November
27-28, 2003, Revised Papers. Lecture Notes in Computer Science, vol. 2971, pp.
402–417. Springer (2003). https://doi.org/10.1007/978-3-540-24691-6 30

19. Kelsey, J., Schneier, B., Wagner, D.A.: Key-Schedule Cryptanalysis of IDEA, G-
DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) Advances in Cryp-
tology - CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings. Lecture Notes in Com-
puter Science, vol. 1109, pp. 237–251. Springer (1996). https://doi.org/10.1007/3-
540-68697-5 19

19

20. Leurent, G.: Analysis of Differential Attacks in ARX Constructions. In: Wang, X.,
Sako, K. (eds.) Advances in Cryptology - ASIACRYPT 2012 - 18th International
Conference on the Theory and Application of Cryptology and Information Secu-
rity, Beijing, China, December 2-6, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7658, pp. 226–243. Springer (2012). https://doi.org/10.1007/978-3-
642-34961-4 15

21. Lipmaa, H., Moriai, S.: Efficient Algorithms for Computing Differential Proper-
ties of Addition. In: Matsui, M. (ed.) Fast Software Encryption, 8th Interna-
tional Workshop, FSE 2001 Yokohama, Japan, April 2-4, 2001, Revised Papers.
Lecture Notes in Computer Science, vol. 2355, pp. 336–350. Springer (2001).
https://doi.org/10.1007/3-540-45473-X 28

22. Matsui, M., Yamagishi, A.: A New Method for Known Plaintext Attack of FEAL
Cipher. In: Rueppel, R.A. (ed.) Advances in Cryptology - EUROCRYPT ’92,
Workshop on the Theory and Application of Cryptographic Techniques, Bala-
tonfüred, Hungary, May 24-28, 1992, Proceedings. Lecture Notes in Computer
Science, vol. 658, pp. 81–91. Springer (1992). https://doi.org/10.1007/3-540-47555-
9 7

23. Mella, S., Daemen, J., Assche, G.V.: New techniques for trail bounds and appli-
cation to differential trails in Keccak. IACR Trans. Symmetric Cryptol. 2017(1),
329–357 (2017). https://doi.org/10.13154/tosc.v2017.i1.329-357

24. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard [8], pp. 428–446.
https://doi.org/10.1007/0-387-34805-0 40

25. Mouha, N.: Toolkit for Bounding Characteristics using SAT/SMT Solvers. https:
//mouha.be/tools/ (June 2013)

26. Mouha, N., Preneel, B.: Towards Finding Optimal Differential Characteristics for
ARX: Application to Salsa20. Cryptology ePrint Archive, Report 2013/328 (2013),
https://eprint.iacr.org/2013/328

27. Mouha, N., Velichkov, V., De Cannière, C., Preneel, B.: The Differential Analysis
of S-Functions. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) Selected Areas
in Cryptography - 17th International Workshop, SAC 2010, Waterloo, Ontario,
Canada, August 12-13, 2010, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 6544, pp. 36–56. Springer (2010). https://doi.org/10.1007/978-3-642-
19574-7 3

28. Nad, T.: The CodingTool Library. In: Workshop on Tools for Cryptanalysis. pp.
129–130 (2010)

29. National Institute of Standards and Technology: Announcing the ADVANCED
ENCRYPTION STANDARD (AES). NIST Federal Information Processing Stan-
dards Publication 197 (November 2001). https://doi.org/10.6028/NIST.FIPS.197

30. Nyberg, K.: Differentially Uniform Mappings for Cryptography. In: Helleseth [16],
pp. 55–64. https://doi.org/10.1007/3-540-48285-7 6

31. Nyberg, K. (ed.): Fast Software Encryption, 15th International Workshop,
FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected
Papers, Lecture Notes in Computer Science, vol. 5086. Springer (2008).
https://doi.org/10.1007/978-3-540-71039-4

32. Saarinen, M.J.O., Engels, D.: A Do-It-All-Cipher for RFID: Design Requirements
(Extended Abstract). Cryptology ePrint Archive, Report 2012/317 (2012), https:
//eprint.iacr.org/2012/317

33. Steil, M.: 17 Mistakes Microsoft Made in the Xbox Security System. 22nd Chaos
Communication Congress (December 2005), http://events.ccc.de/congress/

2005/fahrplan/events/559.en.html

20

34. Wagner, D.: Re-rolled Salsa20 function. http://groups.google.com/group/sci.
crypt/msg/0692e3aaf78687a3 (September 2005)

35. Wheeler, D.J., Needham, R.M.: TEA, a Tiny Encryption Algorithm. In: Preneel, B.
(ed.) Fast Software Encryption: Second International Workshop. Leuven, Belgium,
14-16 December 1994, Proceedings. Lecture Notes in Computer Science, vol. 1008,
pp. 363–366. Springer (1994). https://doi.org/10.1007/3-540-60590-8 29

21

