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Abstract

We investigate algebraic attacks on the Learning Parity with Noise (LPN) problem over
large fields in parameter settings relevant to building indistinguishability obfuscation. In par-
ticular, we consider the setting where the proportion of equations that are corrupted with
noise is inverse-polynomially sparse. Our hope was to obtain a subexponential algorithm using
Macaulay expansion and relinearization. Alas, we did not find any such algorithm. Neverthe-
less, our findings propose an interesting relation between runtime and the rank of the Macaulay
expansion.

If m is the number of initial equations, then the runtime of this attack is proportional to
O
(
2d logm

)
where d is the degree of Macaulay expansion. If the resulting system of equations

has sufficiently large rank, we show that solving the LPN polynomial system requires a O(
√
m)

degree expansion, which would imply a subexponential attack. Under the (more widely believed)
assumption that the expanded system is semi-regular, however, we show that an O(m) degree
expansion is required to recover the secret vector.

In general, O(
√
m)-degree expansions may not have sufficient rank for an attack. We pro-

pose a randomized algorithm to increase the rank of such expanded systems. Our algorithm
introduces carefully chosen new equations to the system that hold with high probability to
improve the likelihood of a successful attack. We highlight the empirical and theoretical chal-
lenges in analyzing this approach. The code for running the proposed algorithm is available at
www.tinyurl.com/lpnattack.

1

mailto:pslou@cs.ucla.edu
mailto:sahai@cs.ucla.edu 
mailto:varunsiva@ucla.edu
www.tinyurl.com/lpnattack


1 Introduction

The LPN over large fields problem has been recently useful for a variety of cryptographic construc-
tions [1, 2, 3, 4]. We study a relinearization attack, as used in the cryptanalysis on the binary
Learning with Errors (LWE) problem[5, 6, 7], on the LPN problem over large fields. In particular,
we use Macaulay expansion [6] in this context.

Let n,m ≥ 1 be integers, q be an odd positive integer and s ∈ Zn
q be a secret vector. Suppose

A ∈ Zn×m
q is chosen uniformly at random, a noise vector e ∈ Zm

q is sampled according to a Bernoulli
distribution, and we obtain (A, s ·A+e) = (A,b) ∈ Zn×m

q ×Zm
q . The LPN search problem requires

recovering s ∈ Zn
q .

Define αi for each i ∈ [m] to be a variable that follows the following distribution:

αi =

{
0 with probability p = 1

nγ

1 with probability 1− p = 1− 1
nγ

(1)

For each i ∈ [m], αi can be interpreted as a Boolean indicator variable that takes the value of 1
if the error term ei is 0 and takes the value of 0 if ei ̸= 0. Let α = (α1, . . . , αm). Suppose we are
given (or guess) the number of errors (zero terms) in α, say t. Then t = m −

∑m
i=1 αi. We thus

have the following polynomial equation system F = F1 ∪ F2 ∪ F3 where

F1 =
{
αi⟨a(i), s⟩ = αibi

}m

i=1
F2 =

{
α2
i − αi = 0

}m
i=1

F3 =

{
t = m−

m∑
i=1

αi

}

2 Preliminaries

Notation For n = n(λ), let Berγ(F) denote the Bernoulli distribution obtained by sampling a
uniformly random element of F with probability n−γ and 0 with probability 1−n−γ and let Berγ(F)m
denote the product distribution whose components are independently identically distributed from

Berγ(F). We will use x
$←− F to denote x sampling uniform randomly from F. For two probabilities

p, q, we denote |p− q| ≤ ϵ by p ≈ϵ q.

Definition 2.1 (Learning Parity with Noise over Large Fields Assumption). For dimension n =
n(λ), number of samples m = m(λ), and noise rate γ(λ), the LPN(n,m, γ) problem is (T, ϵ)-hard
if for any PPT adversary A that runs in time T , it holds that

Pr
[
F←− A(1λ),A $←− Fm×n, e

$←− Berγ(F)m, s
$←− Fn,b←− As+ e : A(A,b) = 1

]
≈ϵ Pr

[
F←− A(1λ),A $←− Fm×n,b←− Fm : A(A,b) = 1

]

2.1 Linearization

Consider a polynomial system F = {fi(x) = 0}mi=1 where each fi(x) ∈ Zq[x1, . . . , xn]. Then
linearization refers to replacing every distinct monomial with a variable and treating the relabelled
equations as a linear system in the new variables. In certain settings, we can perform linearization
and solve the linear system. We can then use the values of the linearized variables to solve for the
original values of x1, . . . , xn.
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2.2 Macaulay Expansion

The explanation of Macaulay expansion below has been taken almost verbatim from Sun et al. [6].
Consider the Arora-Ge approach of linearizing the polynomial system, except that we do not apply
it to the quadratic system directly, but instead to an equivalent, expanded polynomial system. This
expanded system is obtained by multiplying each equation of the form fi(x) = 0 by all possible
monomials of degree up to d, for some fixed d ≥ 0. The d-th Macaulay linear system is then the
linear system obtained by taking this expanded polynomial system and linearizing it, i.e., replacing
each monomial appearing in the system by a new variable. Since the maximum degree is d + 2,
the resulting linear system consists of m ·

(
n+d
d

)
equations in

(
n+d+2
d+2

)
unknowns. The matrix of the

system is called Macaulay matrix.
To give intuition for the Macaulay expansion, observe by Hilbert’s Nullstellensatz that if there

is unique solution (the secret vector) to our initial polynomial system, then the ideal generated by
our initial polynomial system is equivalent to the ideal of polynomials that vanish on that secret
vector:

⟨f1, . . . , fm⟩ = ⟨x1 − s1, . . . , xn − sn⟩.
Therefore, there exists some polynomials of minimal degree, {gi,j}i∈[m],j∈[n] such that for j ∈ [n],

xj − sj = g1,j · f1 + · · ·+ gm,j · fm.

Consider the maximal degree monomial term in any gi,j . The degree of this term is then the desired
Macaulay expansion degree. Moreover, the ideal of polynomials for any Macaulay expanded system
remains equivalent to that of the initial system (by definition of an ideal), so the solution to the
d-th Macaulay expansion must assign sj to the variable xj .

2.3 Semi-Regularity

In the following imported definitions and imported lemma, we consider polynomials f1, . . . , fm ∈
F[x1, . . . , xn] for a field F for m ≥ n.

Definition 2.2 (d-regular [8]). A zero-dimensional overdetermined system (f1, . . . , fm) is d-regular
when for all i ∈ [m], if there exists polynomial g such that deg(g) < d − deg(fi) and g · fi ∈
⟨f1, . . . , fi−1⟩, then g ∈ ⟨f1, . . . , fi−1⟩.

Definition 2.3 (Degree of Semi-Regularity [8]). The degree of semi-regularity of a zero dimensional
ideal I ≜ ⟨f1, . . . , fm⟩ is defined by

dreg = min

{
d ≥ 0 | dimF

(
{f ∈ I,deg(f) = d} =

(
n+ d− 1

d

))}
.

Definition 2.4 (Semi-regular systems [8]). A dreg-regular system is semi-regular.

Lemma 2.5 (Imported from [8]). For a semi-regular system with m ≥ n polynomials, the degree
of semi-regularity is the index of the first non-positive coefficient in the series

H(t) =

∏m
j=1(1− tdeg(fj))

(1− t)n
.

The complexity of a Macaulay attack has a computable upper bound, namely O
((n+dreg

dreg

)ω)
where ω < 2.39 is the linear algebra constant [6, 8]. Therefore, assuming a polynomial system
is semi-regular, characterizing the attack complexity reduces to computing the degree of semi-
regularity. In general, random quadratic polynomial systems are believed to be semi-regular, how-
ever no proof is known.
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3 Potential Attack Strategies

3.1 Macaulay Expansion

Theorem 3.1. Consider an LPN(n,m, γ) instance with m ≥ n. Consider the Macaulay system
obtained by expanding F = F1 ∪ F2 ∪ F3 with degree of expansion d. Let the number of equations
and number of linearized variables obtained from monomials in the expanded system be Ed and Vd

respectively. Then if d = O(
√
m), Vd ≤ Ed.

Proof. Note that every equation in F1 and F2 has degree 2. When we multiply the above system
by monomials to generate a Macaulay matrix, we need to multiply both F1 and F2 with monomials
up to degree d.

Let N = n+m be the number of variables in our system consisting of the n coordinates of the
secret vector s and the m Boolean indicator variables {αi}i∈[m]. With N variables, we have

(
N+d
d

)
monomials of degree at most d by straightforward counting. Note that we have a total of 2m + 1
initial equations from F1, F2, and F3.

After Macaulay expansion with degree d, the number of equations Ed is given by Ed = (2m+
1)
(
N+d
d

)
. The number of monomials in the expanded system Vd is bounded by the number of degree

monomials of degree at most d+2, that is, Vd ≤
(
N+d+2
d+2

)
. We want to find d large enough such that

Vd ≤ Ed. This happens when
(
N+d+2
d+2

)
≤ (2m+ 1)

(
N+d
d

)
. By simplifying the binomial coefficients,

this is equivalent to (N + d+2)(N + d+1) ≤ (2m+1)(d+1)(d+2). Substituting N = n+m, we
obtain a quadratic inequality in d: (2m+ 1)(d+ 1)(d+ 2)− (d+ n+m+ 2)(d+ n+m+ 1) ≥ 0.
The discriminant is given by

∆ = 2m3 + 4m2n+ 2mn2 + 2m2 + 2mn+ n2 ≤ 13m3

We assume m ≥ n. Solving for the larger root of the quadratic equation, n−2m+
√
∆

2m ≤
√
13m3

2m ≤
2
√
m.

This result brings up some interesting questions. Assuming the Macaulay expansion has suffi-
cient rank, expanding with degree d = O(

√
m) suffices to solve for the secret vector s. This could

potentially yield an attack running in time O(2
√
m logm), stronger than any previously known attack

on LPN.
However, the rank of the system may not be high enough with only an O(

√
m) expansion because

the number of variables grows along with the number of equations: for every new equation, we also
introduce an equation in the indicator variable αi. An alternate computation yields a less optimistic
estimation of the degree of regularity. The computation below is very similar to Theorem 5 in [6].

Remark 3.2. For a discussion on semi-regularity and its relation to cryptographic settings, we
refer the reader to [9], especially the discussion on the relevant conjectures noted on page 7.

Theorem 3.3. Consider an LPN(n,m, γ) instance with m = n1+α. Consider the Macaulay system
obtained by expanding F = F1 ∪ F2 ∪ F3 with degree of expansion d. Let the number of equa-
tions and number of linearized variables obtained from monomials in the expanded system be Ed

and Vd respectively. Then assuming semi-regularity, the degree of regularity of the system behaves
asymptotically as

dreg ≈ 0.09n1+α + 0.2n+ 0.18n1−α + o(n−2α) = O(m)

Proof. In our LPN system of 2m + 1 equations, we can substitute α1 = m − t −
∑m

i=2 αi into the
first equation of F1 and F2, thus eliminating α1 without changing the degree of any equation. So
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we have E = 2m equations and V = n+m−1 variables. Let hd be the dth coefficient of the Hilbert
series below:

HE,V (z) =
(1− z2)E

(1− z)V+1
=

∞∑
d=0

hdz
d

The degree of regularity dreg is the first value of d such that hd is non-positive. In [6] (Theorem
5), it is shown that d must satisfy d+ 1 = E − V+1

2 −
√

E(E − V ). Then,

d+ 1 = 2m− n+m

2
−
√
2m(m− n+ 1)

=
3

2
m− n

2
−
√
2m

√
1−

(
1

nα
+

1

n1+α

)
=

(
3

2
−
√
2

)
m+

(
1√
2
− 1

2

)
n+

√
2

8
n1−α + o(n−2α)

≈ 0.09n1+α + 0.2n+ 0.18n1−α + o(n−2α)

If dreg is indeed O(m), then Macaulay expansion is likely to be inefficient. However, we can po-
tentially augment our initial system with additional equations that must hold with high probability.
This could potentially boost the rank of the system even with a smaller degree of expansion.

3.2 Creating new equations with high degree

In an attempt to circumvent the pessimistic implications of Theorem 3.3 and boost the rank of
the system without increasing the degree of expansion too much, we now introduce equations of
high degree that hold with high probability. Note that the equation αi1 . . . αid = 0 holds with high
probability if the degree d is large enough because of the sparsity of LPN. The following theorem
tells us how many such equations we can introduce that simultaneously hold with high probability.
However, how to quantify the increase in rank with these additional equations is still unknown.

Theorem 3.4. Consider an LPN(n,m, γ) instance with m = n1+α. We assume that the number of
instances with errors is t = m

nγ . Pick δ ∈ (0, 1) sufficiently small and d ∈ Z+ such that d = ⌈nγ+γ′⌉
where γ′ < 1 + α. Then we can introduce up to k =

⌊
− ln(1− δ)2n

γ′
⌋

equations of the form

αi1 · · ·αid = 0 where the ij are distinct for each equation, and all k equations hold with probability
1− δ.

Proof. The total number of degree d monomials multilinear in the αi is T =
(
m
d

)
. The degree d

monomials that will evaluate to 1 are the ones corresponding to a choice of d αi’s that are all chosen
from the m − t equations with no mistakes, so set ∆ =

(
m−t
d

)
. Therefore, the number of degree d

monomials that will evaluate to 0 is given by g = T −∆. We want to ensure that the probability
of k such random equations all hold is at least 1 − δ, so we require g!

(g−k)!
(T−k)!

T ! ≥ 1 − δ. Suppose

g ≥ k − 1 > k − 1−∆. It follows that p(g) ≥ gk and q(g) ≤ (g +∆)k. Then, p(g)− (1− δ)q(g) ≥

gk−(1−δ)(g+∆)k. Rearranging terms, we have that the inequality is satisfied when g ≥ (1−δ)
1
k

1−(1−δ)
1
k
·∆.

Rearranging terms once again, this is equivalent to k ≤ min
(
g + 1,− ln(1−δ)

ln(g+∆)−ln(g)

)
. For δ small

enough, it suffices for k to be smaller than the second term. So it suffices that k ≤ − ln(1− δ) g
∆ =
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− ln(1− δ)

(
(md )
(m−t

d )
− 1

)
. Let the degree d = ⌈nγ+γ′⌉ for some parameter γ′. Recall that t = m

nγ .

( (
m
d

)(
m−t
d

) − 1

)
≥
(

m− d+ 1

m− t− d+ 1

)d

≥
(

m

m− m
nγ

)d

≥ 2
d
nγ ≥ 2n

γ′

So we can introduce ⌊− ln(1− δ)2n
γ′ ⌋ equations of degree d that all hold with probability 1− δ.

This analysis required that d ≤ m − t, so assuming n is large enough, we can choose any γ′ less
than 1 + α, although practically it may need to be a little smaller.

Remark 3.5. To avoid confusion, let the degree of the equations we introduce with high probability
be r = ⌈nγ+γ′⌉. Suppose we choose γ′ such that r = dm, where dm is the degree of Macaulay
expansion which guarantees Vd ≤ Ed. Suppose we choose γ′ appropriately such that r = d (or
perhaps d + 1). Then in our Macaulay expanded system, we can eliminate a sub-exponential
number of variables which could potentially significantly boost the rank of our expanded system.

Remark 3.6. We could fix γ′, introduce some equations of degree r = ⌈nγ+γ′⌉ and then perform
Macaulay expansion. We have not worked out the analysis, but it seems possible that introducing

these new high degree equations to the O(
√
m) = O(n

1+α
2 ) degree expansion would give sufficient

rank for the linearization attack. Or alternately, it seems possible that an expansion degree of
O(m1−η) for η > 0 with the introduction of equations of degree r′ > r (pick larger γ′) would
provide sufficient rank for a linearization attack.

At this current in point in time, we do not know how these high degree equations exactly affect
the rank.

4 Proof of Uniqueness

Note that in our set-up, we assume that we know what the number of mistakes t is. We run our
algorithm for increasing values of t until we obtain a solution. However, we want to show that the
solution we find is unique with high probability. Note that t follows a binomial distribution B(m, p)
where p = 1

nγ . Define µ = m
nγ . Let λ be a non-negative integer such that µ+λ ≤ m. Let r = µ+λ.

Fact 4.1. Suppose t follows a binomial distribution B(m, q) with r ≥ µ Then, Pr(t ≤ r) ≥ 1 −
r(1−p)
(r−µ)2

.

Theorem 4.2. Consider an LPN(n,m, γ) instance with m = n1+α. Let the number of errors be t,
and µ = m

nγ the expected number of errors. Suppose nγ ≥ 10 Then with high probability 1− 4
µ , t is

bounded by 2µ and there exists a unique secret vector s = (s1, . . . , sn) satisfying the LPN instance.

Proof. Let r = µ + λ for some integer λ. By Lemma 4.1 above, Pr(t ≤ µ+ λ) ≥ 1 − (µ+λ)(1−p)
λ2 ≥

1− µ+λ
λ2 . Suppose it is possible to solve the entire system for t1 and t2 to find s1 and s2 respectively

where t1, t2 ≤ r = µ+λ and s1 ̸= s2. This means ⟨xi, s1⟩ = ⟨xi, s2⟩ for at least m−t1−t2 equations.
So ⟨xi, s1⟩ = ⟨xi, s2⟩ for at least m′ = m− 2r equations.

So for some matrix A′ ∈ Zm′×n
q with m′ rows chosen from A, A′x = 0 must have a non-zero

solution. For this to not happen, every such matrix A′ must have full rank n. We show that this
happens with high probability. Consider any m′ = m− 2r ≥ n rows chosen from the m rows of A

to form A′. Let K =
(
m
m′

)
=
(
m
2r

)
. We will choose q such that q ≥ m ≥ n. So K ≤ m2r

(2r)2r
≤ q2r

(2r)2r
.
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Call a vector v ∈ Zm
q feasible if it has at most 2r non-zero terms. It follows that

Pr
A
(∃x ̸= 0 ∈ Zn

q : Ax is feasible) ≤
∑

x∈Zn
q−{0}

Pr
A
(Ax is feasible) =

∑
x∈Zn

q−{0}

(
m
2r

)
q2r

qm
≤ qn+4r

(2r)2rqm

Pr
(
rank(A′) = n ∀A′) ≥ 1− qn+4r

(2r)2rqm
= 1− qn+4(µ+λ)

(2r)2rqm

Therefore, this LPN problem has a unique solution with probability at least
(
1− µ+λ

λ2

)(
1− q4(µ+λ)+n

qm

)
.

If we set λ = µ and assume nγ ≥ 10, the above probability is at least 1− 4
µ .

5 Discussion

In this paper, we have suggested some directions to attack the LPN problem. Assuming sufficient
rank, we have some bounds on the minimum degree required for Macaulay expansion, which is of

the order O(n
1+α
2 ) = O(

√
m). However, the rank assumption is likely too strong, and an alternate

computation suggests an estimate of O(m) for the required degree of expansion to recover the
secret vector. Introducing low degree equations that hold with high probability appears unlikely
to change these asymptotics.

On the other hand, introducing equations with high degree using the indicator variables αi to
boost the rank of the Macaulay system might help us recover the secret vector. This definitely
seems to be a promising direction, but with two main challenges:

1. Theoretical Challenge: Studying the rank of the vanilla Macaulay system is in itself quite
difficult and it is not clear how to determine any bounds. Some trivial bounds can be obtained
by counting the number of monomials, but this is unlikely to be of any use in proving that the
expanded system has full rank (that is, the rank equals the number of monomials present).
Further, determining whether introducing randomized equations produces a full rank matrix
remains a challenge.

2. Empirical Challenge: While we have code available, the blow-up in the number of monomials
makes it very difficult to test the behaviour of the algorithm for large values of n, m and d.

However, it is indeed possible that boosting the rank of the Macaulay matrix by setting certain
high degree monomials to zero with high probability may be strong enough that a lower degree of
expansion suffices. Further research in this direction could yield a different sub-exponential attack
for the LPN problem.
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