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Abstract

We present a framework for the study of a learning problem over abstract groups, and
introduce a new technique which allows for public-key encryption using generic groups. We
proved, however, that in order to obtain a quantum resistant encryption scheme, commuta-
tive groups cannot be used to instantiate this protocol.
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1 Introduction

Lattice based cryptography is nowadays the most prominent among the candidate areas for
quantum resistant cryptography. The great popularity of lattice based cryptography is, in great
part, due to its versatility—several different primitives have been constructed based on lattice
problems—and security guarantees such as average-case to worst-case reductions to problems
that are presumably hard even for quantum algorithms. Particularly, the short integers solutions
problem (SIS), used by Ajtai in his seminal paper [1] to construct a one-way function, and the
learning with errors problem (LWE), introduced by Regev in [18], have served as the backbone
for several cryptographic constructions.

The importance of these two problems goes beyond their applications in cryptography, since
their formulation was motivated by purely mathematical problems of a mixed geometric and
algebraic character. For example, SIS can be thought as the problem of finding short elements
in the kernel of a linear function. For its part, LWE is the problem of finding solutions to
a system of noisy linear equations. With these statements of the problems it is possible to
imagine several generalizations of them, since some elements in the statements may seem rather
arbitrary.

In this paper we place the learning with errors problem in a generic framework that allows
us to explore the possible versions of it that might be useful for cryptographic applications,
and that, in turn, also encompass other hard problems that have appeared in previous con-
structions. Specifically we interpret LWE as a learning problem in the context of noisy group
homomorphisms. By abstracting the notion of noise, we dispense with the need of having a
metric defined that is also efficiently computable. We describe a new way to sample a noise that
is efficiently erasable, which allows for the generic construction of a public-key cryptosystem.

Motivation The study of a generic version of LWE is motivated by a variety of reasons. The
best attacks for LWE are instance-specific—they make use of the fact that the relevant homo-
morphisms are between the groups (Z/qZ)n and Z/qZ, which are linear functionals described
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as an inner product. Therefore, an instance using generic groups may avoid these attacks, and
be benefited from having smaller components (keys and ciphertexts) and better performance.
Nevertheless, studying the possible abstract meaning of the concepts the concern LWE, such as
“learning”, “noise” and “rounding”, as well as exploring the mathematical aspects involved in
this abstractions is an interesting endeavor on its own.

1.1 Generalizations and other variants of LWE

The learning with errors problem has received special attention, and several efforts have been
made to improve its efficiency, as a consequence, cryptosystems based on LWE have particularly
enjoyed of a large number of improvements and generalizations. In 2009, polynomial learning
with errors (PLWE) was introduced by Stehlé et al. [20] as a way to optimize computation and
key-sizes for the constructions based on LWE, apparently without compromising the practical
security of these constructions. Short after, Lyubashevsky et al. [13] independently proposed
ring learning with errors (RLWE), which further generalizes PLWE by allowing the objects to
belong to the ring of integers of a number field. The recently popular module-LWE, first intro-
duced in [5] as general -LWE, is the generalization of RLWE to a multidimensional module over
the same ring—generalizing both, LWE and RLWE. Lastly, learning with rounding (LWR)[2]
is a variant of the original LWE problem on which the error is sampled deterministically.

There have been several works outlining generalized versions of LWE in different contexts.
Short after Regev’s introduction of LWE in 2005 [18], Peikert published a work on the hardness
of error-correction in the exponent [16], on which he proves that, for suitable parameters on
the error, bounded-distance decoding (BDD) for a black-box cyclic group is, at least, as hard
as the discrete logarithm problem on the same group. This work lead to posterior analysis of
the learning with errors problem in the exponent by Demarest et al. [9], which generalizes the
original formulation of LWE to the problem of decoding over the group Cnp , and use a new
technique to provide a generic lower bound on the number of queries necessary to solve the
decoding problem in this group. Independently, Dagdelen et al. studied the same problem in
[8], where they describe a relation of this to a generalization of the computational Diffie-Hellman
problem.

In [3], Baumslag et al. propose a generalization of LWE to abstract groups by considering the
distance in a Cayley graph associated to the group. As the authors mention in the paper, this
distance is not always easy to compute, moreover, the problem is known to be NP-complete
for certain instances [19]. However, they propose the use of Burnside groups of exponent 3
(denoted as B3) to instantiate their construction. In a follow-up paper, Fazio et at. [10] make
a deeper study of the hardness of this problem on B3, and provide a worst-case to average-case
reduction of this problem, by proving that it is random self-reducible.

Another approach generalizing the learning problem was proposed by Gama et al. in [11].
They generalize the LWE and SIS problems to finite Abelian groups. The authors show that
the more general versions of the problems still enjoy the worst-case to average-case reductions
that the original formulations have, provided that the instance group is large enough.

Another attempt to use non-commutative groups is described in [6]. In this pre-print Cheng
et al. study the learning problem over the group ring R[G], an algebraic structure which consists
of formal sums of elements of G with coefficients in R. As a concrete instance they choose R = Z
and G = D2n, the dihedral group of order 2n. Their main motivation is to recreate ring-LWE
using a non-commutative group (using integer coefficients) instead of the cyclic group (using
coefficients in the integers or in a cyclotomic ring), to avoid attacks on principal ideal lattices.

Lastly, a recent manuscript by Bootland et al. [4] describes a framework in linear algebra
that encompasses different problems that have appeared in lattice based cryptography, such as
LWE, MLWE and RLWE, as well as in code-based cryptography and the recent constructions
modulo Mersenne primes. This framework allows to obtain a generalization of problems such
as LWE and SIS by choosing the environment: a parent ring, a ciphertext, modulus and a rank.
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1.2 Our work

This paper regards LWE as a learning problem, specifically as a problem of learning homomor-
phisms between two algebraic objects from noisy samples. The final objective of this general-
ization is the possible application of the new version of the problem to construct cryptographic
primitives. With an ideal generalization one would be able to emulate any construction that
uses LWE. However, when trying to recreate the public-key construction described in [18] we
face three main challenges which are how to erase the error, how to combine the elements of
the public key to encrypt a message, and finding instances on which this problem is hard.

Decryption. The decryption algorithm consists of two main steps. The first step is to subtract
the mask using the secret key—in the case of LWE is to subtract 〈s,a〉—resulting in a noisy
version of the plaintext—in the case of LWE, b− 〈s,a〉 = b q2cµ+ e. The second step is to erase
the noise, for this LWE scales down the error to be erasable by rounding the result to the nearest
integer. This, however, depends on having a notion of size—a metric—for the elements of the
group. For a generic group given by a finite set of generators, there is always a well defined
metric—for example, the word metric (referred to as the Cayley distance in [3]). However, in
general this distance may not be efficiently computable.

We propose a purely algebraic approach to define the noise. More specifically, the noise is
sampled from a secret normal subgroup N ≤ H that is subsequently eliminated by projecting
onto the quotient H/N . This approach allows for an unbounded number of operations with
public-key elements, since the noise does not “accumulate”, causing overflows and decryption
errors as in LWE based construction.

Encryption. Public-key encryption is achieved by randomly mixing elements from the public
key, generating a new uniformly looking sample. Mixing noisy elements by summing a random
subset of the public key generates an element with the same structure when the noise elements
commute with the image of ϕ, however, this cannot be guaranteed in general.

Our encryption algorithm works in a similar way, by taking a random word with elements
of the public key. When the group is non-Abelian, this does not always result in a sample
from the same distribution, however, it is possible to recover the message erasing the error
prior to removing the mask. This makes possible the construction of an LWE-like public key
cryptosystem using non-Abelian groups.

Failures and what we learned The main roadblock we encountered was finding an appro-
priate example to instantiate the protocol described in Section 5. Since this construction is
an attempt to bring the learning with errors problem to a generic setting, one of the desired
properties that we had in mind was quantum resistance, which is one of the properties that
have made LWE such an important cryptographic problem in the last decade.

The protocol requires three groups G, H and N , with N a normal subgroup of H, as well as
a homomorphism ϕ : G → H. The private key consists of ϕ and N , therefore, to simply avoid
exhaustive search attacks, it is necessary that

• the group H has a large number of normal subgroups and

• the set Hom(G,H) of homomorphisms from G to H is large.

Moreover, the feasibility of the construction depends as well on the ability of sample from a
probability distribution whose support is included on the kernel of ϕ. It is evident that not
every group satisfies these restrictions, moreover, finding groups with these desired properties
has been a roadblock for this project.

Since every subgroup of an Abelian group is normal, we started our search for examples
in Abelian groups. Two different instances for this construction are described in 6.1 and 6.2.
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Nevertheless, as it is later explained in Section 8, these examples only serve to illustrate the
functioning of the generic encryption scheme, as the fact that the groups used are Abelian make
these instances vulnerable to quantum attacks (and a very trivial classical attack in the case of
6.1).

1.3 Organization

The paper is divided into three main parts. Sections 2 and 3 constitute Part 1, Part 2 is formed
by sections 4 and 5, and sections 7 and 8 make up part 3.

In the first part we provide outline the required material and fundamental theory. In Section
2 we cover most of the theoretical background that is be necessary to provide the context for the
following sections. In Section 3 we discuss the subject of learning a function, and we provide
a definition that is appropriate for this case, as well as the definitions of the computational
problems related to learning noisy homomorphisms between semigroup.

In the second part of the paper we talk about its potential applications to cryptography.
In Section 4 we discuss the difficulties that we find when trying to construct a public-key
encryption protocol following Regev’s blueprint, and we address an alternative solution. Section
5 is dedicated to explicitly describe the construction of a generic pubic-key cryptosystem and
the potential properties that this may have. In Section 6 we make an expository explanation of
two instances of the previous construction.

The third and final part of the paper is dedicated to the cryptanalysis of the construction
and instances described in the previous sections. Section 7 contains basic generic procedures
that may lead to the extraction of information about the secret key, and Section 8 describes
two attacks for the specific case where the group that is used is Abelian.

2 Preliminaries

2.1 Groups and Semigroups

A semigroup is a set S together with an associative binary operation · : S × S → S, sometimes
called the semigroup law. An element e ∈ S is called identity if, for all s ∈ S, s · e = e · s = s.
The identity element is unique in S. Given s ∈ S, an inverse of s is an element s′ ∈ S such that
s · s′ = s′ · s = e. It follows that for all s ∈ S, the inverse is unique and it is denoted by s−1.
A semigroup with an identity element and closed under inverses is called a group. A semigroup
is commutative (or Abelian) if, for all s, s′ ∈ S, s · s′ = s′ · s. If S is a group, a subgroup of S
is a subset H ⊆ S closed under the group operation and inverses, and such that e ∈ H. The
subgroup relation is denoted as H ≤ S. The center Z(S) of a semigroup S is the set of elements
z ∈ S such that for all s, zs = sz. The subgroup generated by a collection {s1, . . . , s`} ⊆ S is
the minimum subgroup 〈s1, . . . s`〉 of S containing them. The order O(s) of an element s ∈ S
is the cardinality of the group generated by s. A subgroup H of S is normal if, for all s ∈ S,
s−1Hs = H. We denote this relation as H E S. The center is a normal subgroup. The (left)
cosets sH of a normal subgroup H of S form a group under the operation sHs′H : = ss′H.
This is called the quotient group, and it is denoted as S/H.

Given two semigroups S and S′, a mapping ϕ : S → S′ is a semigroup homomorphism
if for all s, s′ ∈ S, ϕ(ss′) = ϕ(s)ϕ(s′). If S and S′ are groups (i.e. if possess an identity
element and every element has an inverse), then it follows that ϕ(eS) = eS′ and for all s ∈ S,
ϕ(s−1) = ϕ(s)−1. In this case ϕ is called a group homomorphism. A bijective homomorphism
is called an isomorphism. If e′ is the identity element of S′, the kernel of a homomorphism
is the set Ker(ϕ) := ϕ−1(e′) ⊆ S. The kernel of a homomorphism is a normal subgroup of S,
moreover, if ϕ : S → S′ is a homomorphism, the image of ϕ is a subgroup of S′ isomorphic to
S/Ker(ϕ).
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For a subset Σ = {s1, . . . , sm} of a group S, a word on Σ of length ` is an expression of the
form sσ1w1

· · · sσ`w`
, where ` is a non-negative integer and for all i ∈ {1, . . . , `}, wi ∈ {1, . . . ,m} and

σi = ±1. The empty word is defined as the unique word of length 0. In this paper we denote
the sequence of indices w1, . . . , w` as w, and the word sσ1w1

· · · sσ`w`
as
∏

w s
σi
wi

.

2.2 Rings, fields and polynomials

A ring is a set R endowed with two operations—a sum denoted with “+”, and a multiplication
denoted with “·”—such that R is an Abelian group with respect to the sum, and R a semigroup
with respect to the product, and such that for any a, b, c ∈ R, a · (b + c) = a · b + a · c and
(b+ c) · a = b · a+ c · a. We write R+ when referring to R as the group under addition, and R×

when referring to it as a semigroup under multiplication. We say that R is a commutative ring
if it is an Abelian semigroup with respect to the product. Any ring considered in this paper
is commutative and has a product identity. An ideal is a subgroup I ≤ R+ such that for any
a ∈ R, aI = I. For an ideal I, the quotient group R/I (with respect to the addition) is a ring,
with the multiplication aI · bI = abI. In this paper Zn denotes the ring Z/nZ.

A field is a ring with a multiplicative identity 1 and such that any element different from 0
has a multiplicative inverse. The characteristic of a field is the smallest positive integer c such
that c · 1 = 0. If such an integer does not exists we say that the characteristic of the field is 0.
Moreover, we have that the characteristic of a field either 0 or a prime, hence any field contains
Fp as a subfield, for some prime p. For any prime p and positive integer k there exists a field
with exactly pk elements. This field is unique up to isomorphism, and it is denoted as Fpk .

Given a ring R, let R[x] denote the set of polynomials on x with coefficients in R. The
set R[x] forms a ring with the usual addition and multiplication of polynomials. For polyno-
mials f1(x), . . . , fk(x) ∈ R[x] let 〈f1(x), . . . , fk(x)〉 denote the additive subgroup generated by
f1(x), . . . , fk(x). This subgroup is an ideal of the ring R[x]. If f(x) ∈ R[x] we denote R[x]/f(x)
as the quotient R[x]/〈f(x)〉.

2.3 Elliptic curves

Let F be field of characteristic different from 2 or 3. An elliptic curve is the set E(F) of solutions
to an equation of the form E : y2 = x3 + ax + b over F and an additional identity element.
An elliptic curve has a natural associative operation such that it becomes an Abelian group.
The identity element is usually referred to as the point at infinity. An isogeny over F is a
non-constant map ϕ : E1(F)→ E2(F) of the form

(x, y) 7→
(
f1(x)

g1(x)
,
f2(x)

g2(x)
y

)
that fixes the point at infinity, where f1, f2, g1, g2 are polynomials in F[x]. In this case, E1 and
E2 are called isogenous. An isogeny induces a group homomorphism from E1(F) to E2(F). The
degree of an isogeny is max{f1(x, y), g1(x, y)}. An isogeny is called separable if the derivative

of f1(x)
g1(x) is nonzero.
Not every two curves are isogenous, however, for any prime power q, two elliptic curves

E1, E2 are isogenous over Fq if and only if |E1(Fq)| = |E2(Fq)|. Furthermore, given a fixed
curve E1(Fq) and a subgroup G ≤ E1(Fq) there exist a curve E2(Fq) and a separable isogeny
ϕ : E1 → E2 over Fq with kernel G, moreover, E2 and ϕ are unique up to Fq-isomorphism. This
isogeny can be computed from a set of generators of its kernel by using Velu’s formulas [21].

The isogeny problem is the problem of finding an isogeny between two elliptic curves E1, E2

such that |E1(Fq)| = |E2(Fq)|.
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2.4 Learning With Errors

Given n, q positive integers and χ a probability distribution over Zq, for s ∈ Znq let As,χ denote
the probability distribution over Znq ×Zq obtained by sampling a from Znq uniformly at random,
sampling e form Zq according to χ, and outputting the pair

(
a, 〈a, s〉+ e

)
. Distinguishing As,χ

from the uniform distribution over Znq × Zq is called the decision learning with errors problem.
If q is a prime in poly(n), then this problem is equivalent to LWE.

The main result in [18] is a reduction from the learning with errors problem to variants of
classical problems in geometry of numbers, namely the approximation versions of GapSVP and
SIVP, where the approximation factor γ is polynomial on the dimension n. GapSVPγ on a
lattice L refers to the problem of deciding if the magnitude λ1 of a shortest vector of L is less
than an input value d, or larger than γd; for its part, SIVPγ refers to the problem of finding n
linearly independent vectors in L—where n is the dimension of L—all of which are bounded,
in magnitude, by γ times λn, where λn is the magnitude of the largest vector in the “smallest”
basis of L. See [14] and [17] for more precise definitions. It is worth remarking that the proof
requires the modulus q to be bounded by a polynomial on n and, if q is a prime number, the
learning with errors problem can be reduced to its decision variant.

Both reductions are achieved by constructing a quantum algorithm to sample from a discrete
Gaussian distribution of small width over the lattice L. This algorithm repeatedly iterates a
classical and a quantum step. The algorithm starts with vectors sampled from a wide Gaussian
(which are easy to sample); during the classical step, the algorithm uses the available samples
to construct (an approximation to) the Fourier transform of the discrete Gaussian over L, which
is then used to solve a CVP instance on the dual lattice L∗ with the help of the LWE oracle.
The quantum step uses the classical part in superposition to construct a sampler from a smaller
discrete Gaussian distribution on L.

In the same paper, Regev proposed a public-key encryption scheme whose security guarantee
is based on the hardness of solving LWE. More precisely, let α > 0 and let Ψ̂ be the probability
distribution over Zq resulting from sampling a real value from the Gaussian distribution over R
defined as

ρs(x) = exp
(
− π(x/s)2

)
,

for s = αq, rounding the result to the nearest integer and reducing it modulo q. The cryptosys-
tem can be better understood as an adaptation of the following protocol: suppose s ∈ Znq is a
shared secret key. To encrypt β ∈ {0, 1}, sample a← Znq uniformly and e← Zq according to χ,
and output

(
a, b = 〈a, s〉+ e+ βb q2c

)
. To decrypt the ciphertext (a, b), compute b− 〈a, s) and

observe if the result is closer to q
2 or 0. The decryption scheme returns the correct result if and

only if the noise is in the interval (− q
4 ,

q
4).

The public key cryptosystem is obtained by publishing “encryptions of zero” and use these
to create new LWE samples by adding a random subset of the public key. Strictly speaking,
the resulting sample is under a new LWE distribution, since the noise of some of the elements
in the public key was added. However, since the result is an LWE sample, we use the procedure
described above to decrypt. Below we outline the explicit public key encryption protocol.

KeyGen : Fix a constant ε > 0. Let q ∈ {n2, . . . , 2n2} be a prime and let m = (1+ε)(n+1) log q.
Choose s ∈ Znq uniformly at random. For i ∈ {1, . . . ,m}, sample

(
ai, bi

)
from As,Ψ̂. The

private key is s, and the public key is
{(

ai, bi
)

: i ∈ {1, . . . ,m}
}

Enc : Given a message µ ∈ {0, 1}, choose a random (r1, . . . , rn) ∈ {0, 1}n and output(
n∑
i=1

ri
(
ai, bi

))
+
(
0, µ

⌊q
2

⌋)
=

(
n∑
i=1

riai, µ
⌊q

2

⌋
+

n∑
i=1

ribi

)
.
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Dec : Given a pair (a, b) ∈ Znq × Zq, compute

µ′ =

⌊
2

q
(b− 〈s,a〉)

⌉
.

If the error accumulated during the encryption step is less than q
4 , then the decryption step

recovers the original message, hence the width of the Gaussian should be small enough so
that decryption errors are unlikely. However, the error should also be large enough to provide

security. The security reduction discussed above requires α > 2
√
n
q . In current LWE-based

cryptosystems, the requirement of q being a prime is dropped for simplicity and efficiency
reasons.

3 Learning Homomorphisms

It is well known that a polynomial function p(x) = a0+a1x+. . .+anx
n of degree n over any field

can be uniquely determined provided of n + 1 input/output pairs
(
a, p(a)

)
. We “determine”

this function by computing the coefficients a0, a1, . . . , an of p(x). With this information we
can efficiently compute the polynomial function at any point in the field, hence we can say we
“learned” the function. The concept of “learning” a function can thus be thought as the process
of acquiring enough information to efficiently simulate the behavior of the function at any point
in the domain.

As an example, let V be a linear space over a field F of dimension n and consider F =
HomF(V,F), the set of all linear functions from V to its field of scalars—also called functionals.
Notice then that, by using the algebraic structure of V , it is possible to learn f given n samples(
v1, f(v1)

)
, . . . ,

(
vn, f(vn)

)
, provided that v1, . . . ,vn are linearly independent. This can be

done by writing v in terms of v1, . . . ,vn—as a linear combination v =
∑n

i=1 bivi—computing
the inverse of the matrix whose columns are the vectors vi. Using the linearity of f we obtain
f(v) =

∑
i bif(vi). Moreover, let e1, . . . , en be the canonical basis and let si := f(ei)—

this can be computed using Gaussian elimination. Thus, for v = (a1, . . . an) we can write
f(v) =

∑n
i=1 aisi = 〈s,v〉, where s = (s1, . . . , sn). This means that every f ∈ F can be

expressed as an inner product by a constant vector s, where s depends only on f and can be
found efficiently.

In the case of morphisms between algebraic objects, the precise notion of “learning a mor-
phism” is intrinsically dependent on the model used for the algebraic structures. For instance,
assume that we know (the encodings of) a generating set g1, . . . , gm for a group G, as well as
(the encodings of) their corresponding images ϕ(g1), . . . , ϕ(gm) under a morphism ϕ : G→ H.
This information uniquely determines the morphism ϕ, as the value of ϕ(g) for an element
g ∈ G is given by

∏
w ϕ(gwi), where g =

∏
w gwi . However, computing the word w may be a

hard problem in the group G.
A black-box semigroup is a finitely generated semigroup S together with an injective encoding

function enc: S → {0, 1}∗ and an oracle O that returns the encoding result of operations in
a predetermined operation set Π, where Π contains, at least, the group law. We say that an
algorithm A has black-box access to a finitely generated semigroup S = 〈s1, . . . , sm〉 if it has
access to the list of encodings {enc(s1), . . . , enc(sm)} and input/output access to the oracle O.

Definition 1. Let G and H be finitely generated semigroups and let ϕ : G→ H be a homomor-
phism. Let ξ be a probability distribution over G. Suppose that an algorithm A has black-box
access to G and H. We say that an algorithm A learns the function ϕ with respect to ξ from m
samples

(
gi, ϕ(gi)hi

)
, with hi ← χ, if given g ← ξ

(
〈g1, . . . , gm〉

)
, the algorithm A outputs ϕ(g)

with non-negligible probability, where ξ(S) denotes the probability distribution ξ restricted to
S ≤ G.
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Notice that in the case of noiseless samples, the learning problem reduces to the problem
of finding an expression for g in terms of g1, . . . , gm. This problem, in the case of semigroups,
is called the constructive semigroup membership problem. In [7], Childs and Ivanyos proved
that the constructive semigroup membership problem has an exponential quantum query lower
bound.

Let G and H be groups. Notice that the set Hom(G,H) of homomorphisms ϕ : G → H is
not empty, since the function that maps every element in G to the identity element in H is
itself a homomorphism. In general, however, this set may contain several other elements. Let
ϕ ∈ Hom(G,H) and let g1, . . . , gm ∈ G.

In order to frame this as a computational problem, we shall assume that it is possible to
efficiently sample from a probability distribution χ over G. For ϕ ∈ Hom(G,H) let Γξϕ,χ be
the probability distribution over G × H obtained by sampling g ∈ G according to ξ, h ∈ H
according to χ and outputing

(
g, ϕ(g)h

)
. If G is a finite group and ξ is the uniform distribution

over G, we will omit ξ and denote Γξϕ,χ as Γϕ,χ. The problem of learning ϕ given samples from
Γχϕ,χ is formally described in the following definition.

Definition 2. Let G and H be finitely generated groups. Let ξ and χ be probability distribu-
tions over G and H, respectively. We say that an algorithmA solves the learning homomorphism
with noise problem (LHN) for G, H, ξ and χ if for any ϕ : G→ H, A is able to learn ϕ given a

set of samples from the distribution Γξϕ,χ with overwhelming probability.

In the previous definition it is not required for the groups G and H to be finite, as this
restriction would leave out several basic examples, such as the integers. Ideally, we would
like to have the possibility to consider infinite groups for the distinguishing version of LHN.
Nonetheless, the distinguishing versions of hard problems are usually about differentiating a
particular distribution from uniform. To consider an infinite group, therefore, we need to
replace the uniform distribution with a fixed distribution defined on the group, as the uniform
distribution is not defined on infinite sets.

Definition 3. Let G and H be finitely generated groups and fix a probability distribution Ξ
over G×H. Let ξ and χ be probability distributions over G and H, respectively. We say that
an algorithm A solves the distinguishing homomorphism with noise problem (DHN) for G, H
and ξ and χ with respect to Ξ if for any ϕ : G → H, A is able to distinguish the distribution
Γχϕ,χ from the distribution Ξ over G×H.

Remark 4. The homomorphism learning problem is the noiseless case of the previous problem—
when the support of the noise distribution is 1 ∈ H. As conjugation in a group is an auto-
morphism, the homomorphism learning problem is, in turn, trivially a generalization of the
conjugacy problem.

4 Public-key cryptography from LHN

In 2011, Baumslag et al. proposed a generic framework for the study of the problem of learning
noisy homomorphisms over abstract groups, using the word norm as their tool to measure noise.
From a hard instance of this problem it is easy to derive a symmetric key encryption scheme.
The idea is to share a homomorphism ϕ : G → H as the secret key, this allows to recover eτµ

from the pair
(
g, ϕ(g)eτµ

)
. If τ is large and the noise is small, it is possible to distinguish

whether µ is 0 or 1.
Deriving a public-key cryptosystem, however, is significantly more challenging. Using this

problem in a way that is similar to the one described in 2.4, requires the group to have certain
properties. In a generic language, the idea of the cryptosystem described in 2.4 is to randomly
mix samples

(
gi, ϕ(gi)ei

)
∈ G × H from the public key to obtain a new sample (g, h) whose
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distribution provides no information about the secret key ϕ. This allows us to encode a message
µ in an element τµ ∈ H by “hiding” it in the second coordinate as (g, hτµ). To recover τµ it
is enough to compute h from g and the secret key ϕ. However, h is formed by alternating
multiplication of ϕ(gwi) and elements from the error distribution

h =
∏
w

ϕ(gwi)ewi = ϕ(gw1)ew1ϕ(gw2)ew2 · · ·ϕ(gw`
)ew`

, (1)

while g is only related to gw1 · · · gw`
, in other words, the error elements are “on the way” in h.

One way to solve this problem is to use private information to erase the errors first. As a
concrete example, let K be a group and let ψ : H → K be a second secret homomorphism, and
assume that the error distribution over H efficiently samples elements e ∈ Ker(ψ). Hence we
can erase the error elements by first applying ψ to h to obtain

ψ(h) = ψ
(
ϕ(gw1)

)
ψ(ew1)ψ

(
ϕ(gw2)

)
ψ(ew2) · · ·ψ

(
ϕ(gw`

)
)
ψ(ew`

)
= ψ

(
ϕ(gw1)

)
ψ
(
ϕ(gw2)

)
· · ·ψ

(
ϕ(gw`

)
)
.

Since ϕ and ψ are group homomorphisms, we may now recover the relation of the second
coordinate with g by computing ψ ◦ ψ(g). This motivates the following definition.

Definition 5. Let G, H and K be groups and let ϕ : G → H, ψ : H → K be group homo-
morphisms. Let χ be a probability distribution over H whose support is a subset of Ker(ψ).
We say that an algorithm A solves the normal-learning homomorphism with noise problem
normal-LHN) if A is able to learn ϕ from a set of samples from the distribution Γϕ,χ.

Notice that if the group H is Abelian—or, more generally, if the errors are sampled from
the center of H—Equation 1 can be rewritten as

h =
∏
w

ϕ(gwi)
∏
w

ewi .

Nevertheless, this may lead to weaknesses in the construction. If the center of H, Z(H), is
a proper subgroup, and the projection H 7→ H/Z(H) is efficiently computable, we are in the
case described in Subsection 7.2. This procedure does not provide additional information to
an attacker when H is an Abelian group, since the projection onto the quotient yields a trivial
distribution (g, 1). However, in Section 8 we describe a more effective way to solve normal-LHN
in this case.

5 A Public Key Cryptosystem based on Normal-LHN

In the previous section we argued the possible difficulties when using LHN to obtain crypto-
graphic primitives, and we motivated the definition of normal-LHN based on this discussion,
with the possibility of arriving to a general procedure to construct a public-key cryptosystem
form a generic group. In this section we describe this procedure. As with constructions based
on LWE, we start by describing a symmetric encryption scheme that is later transformed into
a public-key encryption scheme using the algebraic properties inherit to LHN. In Section 6 we
describe two constructions using different algebraic objects: polynomial ring and elliptic curves.
However, in Section 8, we argue why this constructions are insecure in the quantum setting.

Start by recalling that a subgroup N ≤ H is normal if and only if it is the kernel of a
homomorphism from H. Consider three finitely generated groups G, H and K, and let ξ and
χ be probability distributions over G and H respectively such that both distributions can be
sampled efficiently.

9



5.1 A symmetric-key construction

KeyGen(1λ): Given the security parameter λ, choose ϕ : G → H and ψ : H → K efficiently
computable homomorphisms, and τ ∈ H \ Ker(ψ). The shared key is a description of ϕ
and ψ, together with the group element τ .

Enc(β): Given a message β ∈ {0, 1}, sample an element g from G according to ξ and h from
Ker(ψ) ≤ H according to χ. The encryption of β is

(
g, ϕ(g)hτβ

)
Dec(g, h′): Given a pair (g, h′) ∈ G×H, compute ν = ψ

(
ϕ(g)

)−1 · ψ(h′) and output

β′ =

{
0 if ν = 1K ,
1 if ν 6= 1K .

Correctness. Suppose that (g, h′) is a correctly formed encryption of β ∈ {0, 1}. Then the
intermediate step of the decryption algorithm computes

ν = ψ
(
ϕ(g)

)−1 · ψ(h′)

= ψ
(
ϕ(g)

)−1 · ψ
(
ϕ(g)hτβ

)
= ψ

(
ϕ(g)

)−1 · ψ
(
ϕ(g)

)
· ψ(h) · ψ(τ)β

= ψ(τ)β.

The correctness then follows since τ is not in the kernel of ψ.

5.2 A public-key construction

KeyGen(1λ): Given the security parameter λ, choose ϕ : G → H and ψ : H → K efficiently
computable homomorphisms, and for i ∈ {1, . . . ,m} compute(

gi, ϕ(gi)hi
)
∈ G×H,

where gi is sampled from ξ and hi is sampled from Ker(ψ) ≤ H according to χ. The
private key is a description of ϕ and ψ. The public key is the set{(

gi, ϕ(gi)hi
)

: i = 1, . . . ,m
}
⊆ G×H,

together with a public element τ ∈ H \Ker(ψ).

Enc(β): Given a message β ∈ {0, 1}, sample a word ω = w1 · · ·w` over the indices {1, . . . ,m}
of length ` and compute

(g, h′) =

(∏̀
i=1

gwi ,
∏̀
i=1

ϕ(gwi)hwi

)
.

Then output (g, h′τβ).

Dec(g, h): Run the decryption procedure described in Subsection 5.1.

Correctness. Suppose that (g, h) is a correctly formed encryption of β ∈ {0, 1}. Then the
intermediate step of the decryption algorithm computes

ν = ψ
(
ϕ(g)

)−1 · ψ(h)

= ψ
(
ϕ
(∏`

i=1 gwi

))−1
· ψ
((∏`

i=1 ϕ(gwi)hwi

)
· τβ
)

= ψ
(
ϕ
(∏`

i=1 gwi

))−1
·
(∏`

i=1 ψ
(
ϕ(gwi)

)
ψ(hwi)

)
· ψ(τ)β

= ψ
(
ϕ
(∏`

i=1 gwi

))−1
· ψ
(
ϕ
(∏`

i=1 gwi

))
· ψ(τ)β

= ψ(τ)β.

The correctness then follows since τ is not in the kernel of ψ.
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5.3 Properties

Despite being inspired in the traditional LWE cryptosystem, there are several differences be-
tween this and the construction described in the previous subsection that may yield to different
useful properties, as well as different lines of cryptanalysis.

Noise accumulation and decryption errors Due to the geometric nature of LWE, it
is necessary to be careful when handling the noise. Large noise yields to decryption errors,
which in turn give way to key recovery attacks. Noise may accumulate during encryption,
making decryption errors difficult to mitigate—unless an error correcting code is implemented
alongside. Moreover, noise accumulation has been the main obstacle for the design of effective
homomorphic cryptosystems based on lattices, making it necessary the use of bootstrapping to
achieve unbounded depth fully-homomorphic encryption.

A cryptosystem build as in the previous subsection does not suffer from noise accumulation
or decryption errors. Elements sampled form the noise distribution χ are all contained in the
kernel of the secret homomorphism ψ.

Unbounded homomorphic Suppose thatH is a group with non-trivial center Z, and assume
that τ is a non-trivial central element of H of order 2 in the set H \Ker(ψ). Then ψ(τ) is also
a non-trivial central element in the image of ψ. Let β, β′ be two messages and (g, h), (g′, h′)
their corresponding encryptions. Then

hh′ = (
∏

w ϕ(gwi)hwi) τ
β
(∏

w ϕ(gw′
i
)hw′

i

)
τβ

′

=
(∏

w ϕ(gwi)hwi

)
·
(∏

w ϕ(gw′
i
)hw′

i

)
· τβ · τβ′

=
((∏

w ϕ(gwi)hwi

)
·
(∏

w ϕ(gw′
i
)hw′

i

))
· τβ′+β′

.

It follows that the coordinate-wise product (g, h) · (g′, h′) = (gg′, hh′) is a valid encryption of
β + β′.

(Potentially) small keys The encryption mechanism used in traditional LWE mixes ele-
ments of the public key by taking a random linear combination of them, where the coefficients
are in {0, 1}. Such restriction is necessary in order to keep the noise small. This is, however,
not necessary in this case since noise accumulation does not induce decryption errors. In par-
ticular, the number of possible linear combinations of elements g1, . . . , gm of an Abelian group
increases according to their order. In the case of non-Abelian groups, however, the number of
combinations obtained—words in the set S = {g1, . . . gm}—is strictly greater, and depends on
the relations that hold for the set S.

(Potentially) large message space Suppose that a central element τ ∈ Z(G) is such that
the discrete logarithm can be solved efficienticiently in the group generated by ψ(τ), then there
is a way to modify the decryption procedure in 5.1 to increase the size of the message space.
In particular this is true whenever the discrete logarithm is solvable in K. This allows for the
message space to be of the size of O

(
ψ(τ)

)
. Notice, however, that this depends on ψ, which is

part of the secret key.

6 Obtaining instances

In the previous section we described way to obtain public-key encryption form the normal-LHN
problem over a generic group. However, the feasibility of the construction, as well as the security
of it, depend on the specific group that is chosen to instantiate it. In this case, the chosen groups
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G, H and K, the homomorphisms ϕ : G → H, ψ : H → K, and the corresponding probability
distributions must have certain desired properties.

Large key space. The groups Hom(G,H) and Hom(H,K) must be of exponential size on the
security parameter.

Feasibility. There is an efficient algorithm to sample from distribution χ. Since the support
of χ (the set of elements where χ is non-zero) must be contained in the kernel of ψ, there
must be an efficient algorithm to sample from Ker(ψ).

One way to ensure that the first condition is satisfied is to choose a group G with a large
number of normal subgroups, which holds in a trivial manner for Abelian groups. In this section
we present two instances of the construction described in Section 4 using Abelian groups. We
remark that both constructions are vulnerable to the attacks described in Section 8, moreover,
the attack to the first example, the instance using polynomials, does not require the use of a
quantum algorithm, rendering the scheme completely insecure. The second condition is slightly
more difficult to guarantee since the difficulty of finding the kernel of a homomorphism depends
on the way that the homomorphism is described, and this, in general, might be a difficult task.
In the following constructions this problem is addressed by describing the homomorphisms
through the description of their corresponding kernels.

6.1 A polynomial ring instance

Let F be a finite field and let f(x) ∈ F[x] be a polynomial of degree n. For g(x) ∈ F[x] let
[g(x)] denote the coset in R = F[x]/f(x) containing g(x), and let g(x) denote the residue of
g(x) divided by f(x). Notice that g(x) is the unique polynomial of degree less than n in the
coset [g(x)]. We have that for every α ∈ F, the function

ψ : [g(x)] 7→ g(α)

is a group homomorphism from the additive group of R = F[x]/f(x) to the additive group of
F. Notice that this is not a ring homomorphism. The kernel of this homomorphism can be
described by the set of polynomials in F[x] of degree less than n that have α as a root,

Ker(ψ) =
{

[g(x)] : g(α) = 0, deg(g) < n
}

=
{

[(x− α)p(x)] : deg(p) < n− 1
}
.

If F is a finite field, the previous description yields an efficient procedure to sample from the
uniform distribution over Ker(ψ), by sampling uniformly a polynomial p(x) of degree less than
n− 1 and returning (x− α)p(x).

KeyGen(1λ): Pick a polynomial f(x) ∈ F[x]. Choose α, s0, . . . , sn−1 from the uniform distribu-
tion over F and let s(x) =

∑n−1
j=0 sjx

j . For i ∈ {1, . . . ,m} choose ai(x) uniformly from R
and p(x) uniformly from the set of polynomials in F[x] of degree less than n−1. Compute

bi(x) = ai(x)s(x) + pi(x)(x− α).

The private key is the pair
(
s(x), α

)
. The public key is the set of pairs

(
ai(x), bi(x)

)
.

Enc(µ): Given a message µ, encode it as an element of the field F. Choose a random subset
J ⊆ {1, . . . ,m} and compute the ciphertext

(
a(x), b(x)

)
=

(∑
i∈J

ai(x),
∑
i∈J

bi(x) + µ

)
∈ F[x]× F[x].

Dec
(
a(x), b(x)

)
: Compute d(x) = b(x)− a(x)s(x) and output µ′ = d(α).
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6.2 Isogeny LWE

Keeping the kernel of a homomorphism secret is the main idea behind isogeny-based cryptog-
raphy. The isogeny problem is the problem of computing an isogeny between two curves E1,
E2 just by knowing the equations that describe the curves, provided that this isogeny exists
(that the curves are isogenous). In constructions such as SIKE [12], it is assumed that this
problem remains hard even after giving away the image of two points in the curve (specifically
the generators of the 2 or 3 torsion subgroup of E1).

Let p be a prime number and Fp2 be the field with p2 elements.

KeyGen(1λ): For simplicity we divide this section into the isogeny generation and the point
generation.

• Isogenies: Choose k1, k2 ∈ Zn3 uniformly at random. Set G0 = [k1]R0 + [k2]S0 ∈
E0[3n], and find a point H0 ∈ E0[3n] which is independent from G0. Use G0 to
compute the isogeny φ : E0 → E1 with ker(φ) = 〈G0〉, along with φ(H0).

Next, compute a basis R1, S1 for E1[3n]. Choose k3, k4 ∈ Zn3 uniformly at random.
Set G1 = [k1]R1 + [k2]S1 ∈ E1[3n], and test that G1 is independent from φ(H0).
Otherwise choose k3 and k4 again and repeat the previous line. Once G1 and φ(H0)
are independent, compute the isogeny use G1 to compute the isogeny ψ : E1 → E2

with ker(φ) = 〈G1〉.
• Points: Construct points P1, Q1 ∈ E1[2n] such that 〈P1, Q1〉 = E1[2n]. Choose 2m

points at random:
X1, . . . , Xm ∈R E0(Fp2),

Y1, . . . , Ym ∈R Ker(ψ) ⊆ E1[3n].

For each i ∈ {1, . . .m} compute the image of X1, . . . , Xm under φ. The public key
is P1, Q1 and the tuples

(
Xi, φ(Xi) + Yi

)
, for i ∈ {1, . . .m}. The private key is

k1, k2, k3, k4 ∈ Zn3 and ψ(P1), ψ(Q1).

Enc(µ): Encode the message µ into (M1, M2) ∈ (Zm2 )2, where not both M1 and M2 are divisible
by 2. Choose a random subset J ⊆ {1, . . . , t} and compute the ciphertext:

(X,Y ) =

(∑
i∈J

Xi,

(∑
i∈J

φ(Xi) + Yi

)
+ [M1]P1 + [M2]Q1

)
∈ E0(Fp2)× E1(Fp2).

Dec(X,Y ): Given a ciphertext (X,Y ) ∈ E0(Fp2)× E1(Fp2), compute

Z = ψ
(
Y − φ(X)

)
.

Using the knowledge of ψ(P1), ψ(Q1) solve the two dimensional elliptic curve discrete
logarithm problem:

Z = [M ′1]ψ(P1) + [M ′2]ψ(Q1)

and recover the message M from (M ′1, M
′
2).

7 Generic solutions to the morphism learning problem

7.1 Order attack

The order finding problem is the problem of finding the order of a group element, given oracle
access to the group, where the allowed operations are the group law and inverse. This problem,
to the best of our knowledge, is hard to solve classically. A quantum algorithm, however, can
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solve the order finding problem by using phase estimation [15]. The solution for this problem
is at the core of Shor’s algorithm for factoring and solving discrete logarithm over Zn.

The simplest case to solve the learning problem is when the samples have not been altered
by random noise, in other words, where the input of the problem is a collection of samples
of the form

(
g, ϕ(g)

)
. Let G and H be groups and let ϕ : G → H be a homomorphism. By

definition, ϕ(eG) = eH . Then, for g ∈ G, the order of g, O(g), is bounded below by the
order of ϕ(g). Moreover, O(g) is a multiple of O

(
ϕ(g)

)
. Hence, given a collection of samples(

gi, ϕ(gi)
)
∈ G×H, an attacker can distinguish this distribution from U(G×H), by observing

that the order of the left coordinate is always a multiple of the order of the right coordinate.

7.2 Noise in a known normal subgroup

In [3], the authors remark that, for the distribution Γϕ,χ to be indistinguishable from U(G×H),
the support of ϕ should not be contained in a proper normal subgroup of H, as otherwise an
attacker can “factor out” this subgroup obtain a noiseless distribution, on which the attacker can
perform the order attack previously described to distinguish it from the uniform distribution.
In more detail, let N E H be a normal subgroup of H containing the support of ϕ. Then the
mapping

ϕ̄ : g 7→ ϕ(g)N

is a homomorphism ϕ̄ from G to the quotient group H/N . The distribution
(
g, ϕ̄(g)

)
is a

noiseless distribution over G×H/N .
Notice that in order to define ϕ̄, and to be able to perform operations in the group H/N ,

it is necessary to know what the group N is. Therefore, performing this attack requires the
knowledge of the normal subgroup on which the support of the noise is contained.

8 Solving normal-LHN for Abelian Groups

In this section we prove the impossibility of constructing a quantum-resistant cryptosystem
based on the hardness of normal-LHN for Abelian groups. As a warm-up, we start by recalling
the standard way to reduce LWE to SIS. Suppose that we are given m LWE samples

(
ai, bi =

〈ai, s〉+ ei
)
. Finding the secret s is equivalent to solving the equation

As + e = b,

where the matrix A and the vectors e and b are formed with the entries of the samples. To
solve this one may try to “get rid of the action of s” by computing a vector t in the null-space
of AT and multiplying b by tT . This way we obtain

tTb = tTAs + tTe = tTe.

When t is a small vector, the product tTe is also small hence it is possible to solve the decisional
version of LWE.

The previous idea can also be used to solve LHN in the case of Abelian groups. When the
number of samples in the public key exceeds the rank of the group it is possible to mount a
key-recovery attack from the public key. In the other case, when the number of samples that
constitute the public-key is less than or equal to the rank of the group, it is possible to recover
a message from any encryption of it. Observe that any group homomorphism is constant on
the cosets of its kernel; hence a group homomorphism is a hiding function of its kernel.
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8.1 Secret key recovery

Let G, H, K be Abelian groups (denoted additively) and let ϕ : G→ H and ψ : H → K be two
secret homomorphisms. Let ` be the rank of G and suppose that we are given m > ` samples
of the form (

gi, ϕ(gi) + hi
)
∈ G×H

with hi ∈ Ker(ψ). Now consider the map f : Zm → G given by

f : (a1, . . . , am) 7→
m∑
i=1

aigi ∈ G.

This map is a group homomorphism. Using Shor’s algorithm it is possible to find a generating
set for the kernel of f . If (a1, . . . , am) ∈ Ker(f), we have that

m∑
i=1

ai
(
gi, ϕ(gi) + hi

)
=

(
0,

m∑
i=1

aihi

)
∈ {0} × ker(ψ),

obtaining a random element in kerψ. By repeating this process we can obtain a generating set
of kerψ.

8.2 Message recovery

Suppose that we have the same setup as before, but this time m ≤ `. Let
{(
gi, ϕ(gi) + hi

)
: i =

1, . . . ,m
}

be the public key and let (g, h) =
∑m

i=1 ri
(
gi, ϕ(gi) + hi

)
+ (0, βτ) be an encryption

of β. Consider the function f : Zm+1 → G given by

f : (a1, . . . , am, am+1) 7→ −ai+1g +

m∑
i=1

aigi.

As before, this is a group homomorphism. Using Shor’s algorithm it is possible to find a
generating set for the kernel of f ; moreover, this has rank one and is generated by the tuple
(r1, . . . , rm, 1). Using these recovered coefficients and the public key, it is possible to recover βτ
from the given ciphertext.

9 Unexplored Paths and Future Work

Cryptanalysis Like any new problem, the learning homomorphism with noise problem re-
quires a deeper understanding to be used for cryptographic applications. However, the problem
is stated generically, hence every instance of this should be studied separately. In Section 8 we
describe quantum procedures to recover the secret key or plaintext by using Shor’s algorithm,
whenever an Abelian group is used to instantiate the normal-LHN problem. The classical
hardness of this problem, however, still remains unaddressed.

Relation to other problems As mentioned before, the popularity of cryptosystems based on
LWE and SIS started with the average-case to worst-case reductions from well-known problems
in geometry of numbers to these. Unfortunately, since normal-LHN lacks the geometric aspect,
we do not expect the existence of a relation with this to some abstraction of GapSVP or SIVP
that preserves the geometric idea. Nevertheless, the algebraic nature of this problem opens the
possibility to find a relation to classical problems in group theory such as the hidden subgroup
problem. It is worth recalling here that the general LHN immediately generalizes the conjugacy
problem.
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Non-Abelian instances The constructions described in Section 6 make use of Abelian
groups—polynomial rings and elliptic curves—to instantiate the normal-LHN problem. Nonethe-
less, one interesting aspect of the algebraic approach described in Section 4 is the ability to use
non-Abelian groups, doing away with the need for an efficiently computable metric in the group.
While searching for instances of the normal-LHN problem, there are some properties that one
must keep in mind.
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