
Zero-Knowledge PCPs from Leakage-Resilient Circuits, Revisited

Mor Weiss∗

May 24, 2019

Abstract

This work studies several enhancements and extensions of known leakage-resilient circuits,
motivated by their possible applications to zero-knowledge proof systems.

Leakage-Resilient (LR) circuits are circuits that resist certain “side-channel” attacks, in the
sense that such attacks reveal nothing about the (properly encoded) input, other than the
output. Probabilistically Checkable Proofs (PCPs) allow a probabilistic verifier, given oracle
access to a purported proof, to verify claims of the form “x ∈ L” for an NP-language L, while
probing only few proof bits. Zero-Knowledge (ZK) PCPs have the added feature that any verifier
querying few proof bits learns nothing about the underlying NP-witness.

Recently, Ishai, Weiss and Yang (TCC 2016-B) showed a surprising connection between these
seemingly unrelated notions: they used LR circuits to construct PCPs with ZK guarantees and
a non-adaptive honest verifier (previous ZK-PCP constructions required adaptive verification).
Their technique required sound LR circuits which, roughly, are LR circuits that detect and
reject ill-formed encoded inputs. They construct sound LR circuits based on the LR circuits of
Faust, Rabin, Reyzin, Tromer and Vaikuntanathan (Eurocrypt 2010). Though improving certain
properties of the PCP, their construction only obtained Witness-Indistinguishability (WI), i.e.,
simulation with an inefficient simulator, and not full-fledged zero-knowledge, which they show
to be inherent to a construction based on the LR circuits of Faust et al., unless NP = BPP.

The initial goal of this work was to use the technique of Ishai et al. to construct ZK-
PCPs with efficient simulation, which necessitates replacing the LR circuits of Faust et al. in
the transformation. Towards that end, we generalize and improve several other LR circuits,
though ultimately failing to construct LR circuits that provably satisfy all needed properties.
First, we present a candidate construction based on the probing-resilient circuits of Ishai, Sahai
and Wagner (CRYPTO 2003) which we conjecture resists the type of leakage that is useful
in constructing ZK-PCPs. Second, we describe a variant of the probing-resilient circuits of
Andrychowicz, Dziembowski and Faust (Eurocrypto 2016) which guarantees soundness. Third,
we consider the LR circuits of Goyal, Ishai, Maji, Sahai and Sherstov (FOCS 2016) which resists
so-called “only computation leaks” leakage, and show inherent limitations towards extending it
to resist the type of leakage that is useful towards constructing ZK-PCPs. Finally, we consider
the LR circuits of Miles and Viola (STOC 2013) which resist NC1-leakage, and describe a first
step towards making them sound. These variants and insights may be of interest independently
of their applications towards constructing ZK-PCPs.

We also consider generalizations of the WI-PCP of Ishai, Weiss and Yang to PCPs of proxim-
ity (PCPPs), which are PCPs that allow the verifier to check statements of the form “x is close
to L” while querying only few bits of x (and the proof). Specifically, we reduce the problem of
constructing WI-PCPs of proximity to a natural coding question.

∗Efi Arazi School of Computer Science, IDC Herzliya, Herzliya, Israel. mor.weiss01@post.idc.ac.il.
Work done in part while the author was a PhD student at the Technion and a postdoctoral researcher at Northeastern
University.

1

Contents

1 Introduction 3
1.1 Our Contributions . 4
1.2 ZK-PCPs from Leakage-Resilience . 5

1.2.1 Towards ZK-PCPs with efficient simulation: Going beyond [IWY16] 6
1.2.2 Towards Going Beyond AC0 [⊕]-Leakage . 8

1.3 Towards WI-PCPs of Proximity from LRCCs . 9
1.4 On the Limits of the ZK-PCP of [KPT97] . 10

2 Preliminaries 11
2.1 Leakage-Resilient Circuit Compilers . 12
2.2 Gadget-Based Leakage-Resilient Circuit Compilers 13
2.3 Zero-Knowledge and Witness-Indistinguishable Probabilistically Checkable Proofs . . 14

3 Extensions of the ISW-LRCC [ISW03] 14

4 Extensions of the ADF-LRCC [ADF16] 19

5 Obstacles in Extending the GIMSS-LRCC [GIM+16] to Resist AC0 [⊕]-Leakage 24

6 Extensions of the MV-LRCC [MV13] 25

7 Non-Adaptively Verifiable WI-PCPs of Proximity 30
7.1 Notations and Definitions. 31
7.2 LRCCs with public inputs . 35
7.3 Average-Case LRCCs . 38
7.4 A PCPP for 3SAT based on [AS92] . 40
7.5 The WI-PCPP System . 41

2

1 Introduction

Probabilistically Checkable Proofs. Probabilistically Checkable Proofs (PCPs) [ALM+92,
AS92] are proofs systems that allow a Probabilistic Polynomial Time (PPT) verifier, with oracle
access to a purported proof, to check statements of the form x ∈ L for some NP-language L by
reading few proof bits. We think of the proof π as generated by a PPT prover that is given the
corresponding NP witness w. If x ∈ L then the verifier accepts an honestly-generated proof π with
probability 1, whereas if x /∈ L then any purported proof π∗ is accepted with low probability (the
probability that the verifier accepts x /∈ L is called the soundness error). The celebrated PCP
theorem [AS92, ALM+92, Din06] asserts that any NP language has a PCP system with soundness
error 1/2 and a verifier that non-adaptively reads a constant number of proofs bits. (A verifier is
non-adaptive if his queries are determined solely by his randomness, regardless of the oracle answers
to previous queries.)

Zero-Knowledge PCPs. A seemingly unrelated notion is that of Zero-Knowledge (ZK)
Proofs [GMR85] which are proofs that carry no extra knowledge other than being convincing.
The first to combine the notions of PCP and ZK were Kilian, Petrank and Tardos [KPT97] who
defined and constructed Zero-Knowledge PCPs (ZK-PCPs). ZK-PCPs are PCPs with the addi-
tional guarantee that the view of any (possibly malicious) verifier that queries a bounded number
of proof bits can be efficiently simulated, where the real and simulated views are statistically close.
We note that in a ZK-PCP the proof is randomized. Kilian et al. [KPT97] transform standard
PCPs for NP into PCPs with statistical ZK against malicious verifiers that are limited to querying
only p (|x|) proof bits, for some a-priori fixed polynomial p which is much smaller than the proof
length, but can be much larger than the number of queries the honest verifier makes (which is
usually poly log (|x|)).

Adding the ZK guarantee to PCPs did not come without a price. Specifically, the transfor-
mation of [KPT97] caused both a polynomial blowup in the proof length, and required adaptive
verification, namely even the honest verifier is adaptive. Both of these limitations are inherent to
the construction of [KPT97], as we explain in Section 1.4 below. This raises the following natural
questions:

What is the cost of ZK in PCP systems? Do there exist ZK-PCPs of quasilinear
length that can be verified non-adaptively?

Two concurrent and independent works tried to answer these questions by employing different
techniques than [KPT97]. Ben-Sasson et al. [BCGV16] relied on algebraic properties of specific
PCPs (e.g., the PCPs of [BFLS91, ALM+92, BS08]) to modify the PCP, introducing minor mod-
ifications of the prover and verifier algorithms, such that the resultant proof also guarantees ZK.
They achieve perfect ZK, i.e., the real and simulated views are identically distributed, with proofs
of quasilinear length. However, technically their construction is not a PCP since the prover is
adaptive, in the sense that it sends the PCP to the verifier in two rounds: after receiving the
first-round PCP, the verifier sends a message to the prover, which the prover uses to construct the
second-round PCP. This notion of a PCP with adaptive prover was later generalized to Interac-
tive Oracle Proofs (IOPs) [BCS16, RRR16] (also known as Probabilistically Checkable Interactive
Proofs) which have seen applications to ZK proofs in different models, including implementations
(see, e.g., [BCS16, BCF+17, BBC+17, BBHR18b, BBHR18a] and the references therein).

Ishai et al. [IWY16] focused on obtaining non-adaptive verification in the standard PCP model.
They use Leakage-Resilient Circuit Compilers (LRCCs) [ISW03] to construct a PCP with a non-
adaptive honest verifier which guarantees ZK with an unbounded simulator (namely, they achieve

3

witness indistinguishability), and proofs of polynomial length. They also obtain standard ZK (with
an efficient simulator) in the Common-Random String (CRS) model.

Though introducing new techniques towards the design of ZK-PCPs, the works of [BCGV16,
IWY16] fall short of answering the above questions since they do not simultaneously achieve ZK
with a non-adaptive verifier in the standard PCP setting. In this work, we consider several directions
towards extending and improving the result of [IWY16]. These directions focus on improving the
underlying LRCCs which, as explained in Section 1.2 below, are the cause for inefficient simulation.
For each direction we either explain why it fails, or point to related open problems which remain
to be proven. We first turn our attention to leakage-resilient circuits.

Leakage-Resilient Circuit Compilers (LRCCs). Informally, an LRCC compiles a circuit
into a new circuit that takes encoded inputs, and resists side-channel attacks in the sense that
these reveal nothing about the (properly encoded) input, other than the output. Since one cannot
protect against arbitrary polynomial-time computable leakage [BGI+01], works on LRCCs consider
restricted classes of leakage functions. One line of work [ISW03, FRR+10, Rot12, MV13, Mil14,
ADF16] restricts the complexity class to which leakage functions belong. Another approach, called
“Only Computation Leaks” (OCL) (see, e.g., [MR04, GR10, JV10, GR12, DF12, GIM+16]) assumes
leakage functions are “local” in the sense that they operate on disjoint sets of wires of the circuit.

More formally, an LRCC is associated with a class L of leakage functions, and a randomized
encoding scheme E which is used to encode the inputs. The LRCC compiles a given circuit C into
a circuit Ĉ that emulates C, but operates on encodings generated by E. Ĉ is leakage resilient in
the sense that for every input x for C, and any leakage function ` ∈ L which operates on the wire
values of Ĉ, the output of ` when Ĉ is evaluated on a random encoding E (x) of x can be simulated
given only the output C (x).

The construction of ZK-PCPs from LRCCs requires that the underlying LRCC have an addi-
tional soundness guarantee which [IWY16] introduce and term SAT-respecting. Roughly, an LRCC
is SAT-respecting if for any circuit C, if the leakage-resilient circuit Ĉ is satisfiable then so is the
original circuit C.

1.1 Our Contributions

We explore several avenues towards improving existing LRCCs and the WI-PCP construction
of [IWY16]:

• In terms of improving the leakage resilience guarantees of LRCCs, we provide a candidate
construction of a SAT-respecting LRCC, based on the probing-secure LRCC of [ISW03],
which we conjecture to resists AC0 [⊕] leakage, namely leakage computable by constant-depth
boolean circuits with AND, OR, NOT, and XOR gates of unbounded fan-in and fan-out.
We note that AC0 [⊕]-leakage is sufficiently strong to allow us to employ the LRCC-to-PCP
transformation of [IWY16]. We also point to obstacles in extending the leakage-resilience
guarantee of the (SAT-respecting) LRCC of [GIM+16] to AC0 [⊕] leakage.

• In terms of adding a soundness guarantee to LRCCs, we describe a SAT-respecting variant
of the probing-secure LRCC of [ADF16], as well as a first step towards making the LRCC
of [MV13], that resists leakage against a large class of leakage functions (including AC0 [⊕]),
SAT-respecting.

• In terms of improving the transformation of [IWY16], we extend it to apply to PCPs of
proximity, and reduce the security of the resultant WI-PCP of proximity to a natural coding
question.

4

As noted above, and explained in detail below, improving the leakage-resilience and SAT-
respecting guarantees of existing LRCCs could also potentially improve the transformation
of [IWY16].

In the following sections we provide more details about these contributions.

1.2 ZK-PCPs from Leakage-Resilience

Before discussing several (attempts to obtain) improvements to the Witness-Indistinguishable (WI)
PCP of [IWY16], we first explain in detail their approach towards constructing ZK-PCPs from
LRCCs.

The construction of [IWY16]. The main observation of [IWY16] is that one can think of the
PCP bits queried by a (possibly malicious) verifier V ∗ as leakage on the NP-witness. Indeed, the
PCP is obtained by applying the honest prover algorithm P to the NP-witness w, and the queried
PCP bits are the restriction of the prover’s output to few bits. Namely, any subset I of queried
bits defines a leakage function `I which on input w applies the prover algorithm P to w to obtain
a proof π, and outputs πI . Ishai et al. [IWY16] observe that if the original PCP is resilient against
such leakage functions, then the PCP system is ZK.

In general, PCPs are not resilient against such leakage, but they can be made resilient using an
LRCC as follows. Consider the verification circuit C of an NP relation RL, and assume without
loss of generality that the NP-witness w is the entire wire values of C when evaluated on x and a
witness y for the membership of x in L. To prove that x ∈ L, the prover P should convince the
verifier V that Cx (i.e., C with x hard-wired into it) is satisfiable. To do so in zero-knowledge,

both P, V replace Cx with its leakage-resilient version Ĉx, and P proves to V that Ĉx is satisfiable
by constructing a PCP π from the wire values of Ĉx.

This transformation crucially relies on the fact that Ĉx emulates Cx (e.g., if Ĉx always outputs
1 then the resultant PCP system is not sound). Standard LRCCs (e.g., [FRR+10, DF12]) only

guarantee this when the encoded input to Ĉx is honestly generated, so a malicious prover P ∗ can
cheat by generating the proof from the wire values of Ĉx on ill-formed inputs. More specifically,
the leakage-resilient circuits in these constructions expect to obtain, as part of an input encod-
ing, structured randomness (so-called “masks” or “opaque gates”) which is then used to mask
intermediate computations to achieve leakage resilience. The leakage-resilience simulator uses ill-
formed randomness to simulate the wire values. The main technical contribution of [IWY16] is the
construction of an LRCC with an additional soundness guarantee which they call SAT-respecting.
Recall that an LRCC is SAT-respecting if for any circuit C, if the leakage-resilient circuit Ĉ is
satisfiable then so is the original circuit C. Their construction, which is based on the LRCC of
Faust et al. [FRR+10] is leakage-resilient with an inefficient simulator, which is the reason their
resultant PCP only guarantees WI and not ZK.

Ishai et al. [IWY16] observe that inefficient simulation is in certain cases inherent to the leakage-
resilient based technique, in the sense that efficient simulation is possible only for languages in BPP.
More specifically, the underlying LRCC of [FRR+10] has a strong leakage-resilience guarantee: it
has a universal simulator which, roughly, simulates the entire wire values of the circuit without
knowing the leakage function, and these simulated wires are simultaneously “good” for all leakage
functions (i.e., leakage functions cannot distinguish between the simulated and actual wire values).
They use this universal simulation property, together with the SAT-respecting guarantee of the
leakage-resilient circuit, to decide the language.

5

1.2.1 Towards ZK-PCPs with efficient simulation: Going beyond [IWY16]

Given the aforementioned observation of [IWY16], it is clear that constructing ZK-PCPs with
efficient simulation from LRCCs requires using an LRCC in which the simulator is not universal.
We focus on three such general compilers: the compiler of Ishai, Sahai and Wagner [ISW03],
the compiler of Andrychowicz, Dziembowski, and Faust [ADF16], and the compiler of Goyal et
al. [GIM+16]. All these compilers follow the same paradigm of replacing wires in the circuit with
bundles of wires that carry encodings of the wire values of the original circuit, and replacing gates
with gadgets which are sub-circuits that emulate the gate operation over bundles (see Section 2.2
for a more detailed description of gadget-based LRCCs). We discuss each of these in turn.

In the following, we say a class F of functions “contains a PCP” if the PCP prover algorithm,
when its output is restricted to any “small” subset of bits, computes a function in the class F .
We rely on the following observation from [IWY16]: the class AC0 [⊕] of constant-depth boolean
circuits with AND, OR, NOT, and XOR gates of unbounded fan-in and fan-out contains the PCP
of Arora and Safra [AS92]. In fact, the AS-PCP only uses a small (poly-logarithmic in the input
length) number of XOR gates, so in the following we use AC0 [⊕] to denote circuits as described
above with few XOR gates.

The ISW LRCC [ISW03]. The ISW LRCC transforms boolean circuits into leakage-resilient
counterparts, by encoding each bit b with a bit-string whose parity is b, and using gadgets that
emulate AND and NOT gates. An important property of the compiled circuit is that it does not
use any structured randomness, and is consequently SAT-respecting. (In more detail, any input
encoding x̂ for the leakage-resilient circuit Ĉ corresponds to some input x for the original circuit C,
and in particular if x̂ satisfies Ĉ then x satisfies C.) However, the ISW-LRCC only resist probing
attacks that output a small subset of the wire values, and this function class does not contain a PCP.
(Indeed, the local verification property of the PCP requires the prover to perform some computation
over the NP-witness.) The ISW-LRCC is conjectured to resist AC0 leakage, i.e., leakage computable
by constant-depth boolean circuits with AND, OR, and NOT gates of unbounded fan-in and fan-
out. However, proving this seems to be a hard problem (where later works that protect against
wider leakage classes, e.g. [FRR+10, Rot12], provide different constructions instead of extending
the security proof of the ISW-LRCC), and currently there isn’t even a candidate simulator for
proving this conjecture.

Recall that when constructing a ZK-PCP from an LRCC, the LRCC should resist leakage from
a function class that contains the PCP. The PCP of [AS92] is not contained in AC0 - the use of XOR
gates is inherent to the construction.1. It is easy to see that the ISW-LRCC is insecure against such
leakage, because its intermediate computations are encoded using parity encoding which AC0 [⊕]
circuits can decode. For example, consider a circuit C (x1, x2) = x1 ∧ x2 consisting of a single
AND gate. Then AC0 [⊕]-leakage-resilience requires the existence of an efficient simulator that can
simulate the leakage given only the output of the circuit, and the simulated leakage should be
indistinguishable from the actual leakage. Since C (0, 0) = C (0, 1) = 0, this implies that applying
an AC0 [⊕]-leakage function ` to the wire values in a computation on inputs (0, 0) and (0, 1) should
yield indistinguishable distributions. However, the leakage function ` that decodes the second input
gives efficiently distinguishable distributions (whose distance is 1).

A possible approach towards obtaining AC0 [⊕]-leakage-resilience is to modify the ISW-LRCC
to operate over F3 instead of F2. The high-level idea is conceptually simple: replace the parity
encoding with mod-3 encoding over F3 which encodes every element z ∈ F3 by a vector over

1In fact, this is the case in most PCPs in the literature, which use a sum-check protocol that requires performing
additions over a field.

6

F3 that sums to z, and generalize the AND and NOT gadgets to operate over mod-3 encodings.
However, formalizing this intuition requires some work since the ISW-LRCC was designed to work
specifically over boolean circuits, whereas here we are using arithmetic circuits to emulate boolean
computations. In particular, it is not even clear what “AND gates” and “NOT gates” mean when
operating over F3. However, since we are only interested in emulating boolean computations, we
can meaningfully define these operations to emulate the desired functionality, such that when given
inputs in {0, 1}, the operation is consistent with standard AND and NOT. Additionally, for the
SAT-respecting property we need to ensure that the inputs to the leakage-resilient circuit encode
bits. This can be achieved by checking, in a leakage-resilient manner, that each input symbol is a
zero of the polynomial x · (x− 1), and if not then force the output to be 0. (A similar idea was used
in [IWY16].) We describe this construction in Section 3, and show that is resists probing attacks
(as the original ISW-LRCC). We note that similar to the original ISW-LRCC, we do not currently
have any candidate simulator for proving AC0 [⊕]-security of this modified construction.

The ADF-LRCC [ADF16]. Similar to [ISW03], the ADF-LRCC protects against probing at-
tacks. The construction is more general than [ISW03], where the compiler can operate over any
field, and using any “multiplication-friendly” encoding2 such as Shamir secret sharing [Sha79] or
Algebraic-Geometry (AG) codes [CC06]. Though both [ISW03, ADF16] only protect against prob-
ing attacks, a class which doesn’t contain a PCP, the ADF-LRCC has the advantage of generality:
since it can be instantiated using various different encodings over different fields, it may be more
easily modified to achieve stronger leakage-resilience guarantees.3 In particular, an implementa-
tion over extension fields of F3 with Shamir secret sharing might resist AC0 [⊕] leakage, though we
currently do not have a candidate simulator towards proving this.

One disadvantage of the ADF-LRCC is that it uses structured randomness, where correctness
of the computation relies on this randomness having the “right” structure. As noted above, most
LRCCs (e.g. [FRR+10, DF12]) rely on structure randomness, but whereas the amount of structured
randomness used in these construction scales with the computation size, the amount of structured
randomness used in the ADF-LRCC scales only with the input size, and is independent of the
computation size. This gives the hope of being able to verify, inside the compiled circuit, that the
randomness has the desired structure, without harming leakage-resilience. In section 4, we describe
a variant of the ADF-LRCC that includes this additional check, which gives a probing-attach secure
SAT-respecting LRCC over general fields (with improved leakage rate).

The GIMSS-LRCC [GIM+16]. The LRCC of [GIM+16] uses MPC protocols to resist leakage
from a broad function class that includes so-called “Only Computation Leaks” (OCL) leakage,
namely leakage which is “local” in the sense that leakage functions operate on disjoint sets of wires
of the circuit. More specifically, [GIM+16] protect against an extended version of the OCL model
of Micali and Reyzin [MR04], also known as “OCL+” [BCG+11], which [GIM+16] call Bounded
Communication Leakage (BCL). Informally, in this context, the wires of the leakage-resilient circuit

Ĉ are partitioned into a “left component” ĈL and a “right component” ĈR. Leakage functions
correspond to bounded-communication 2-party protocols between ĈL, ĈR, where the output of the

2Roughly, an encoding scheme is “multiplication friendly” if the product of two encodings can be computed as a
linear combination of the component-wise products. That is, given two encodings â = (a1, . . . , an) and b̂ = (b1, . . . , bn)
of values a, b (respectively), the product c = ab can be obtained as a linear combination of the products a1b1, . . . , anbn.

3We note that the ADF-LRCC also achieves a better leakage rate (i.e., the blowup in size of the compiled circuit
is smaller). In fact, this was the goal of [ADF16], however it is of lesser importance for us, though we note that a
better leakage rate might help in reducing the proof length in the resultant ZK-PCP.

7

leakage function is the transcript of the protocol when the views of ĈL, ĈR consist of the internal
values of the wires of these two “components”.

BCL leakage is quite powerful. In particular, it is broad enough to capture several realistic
leakage attacks such as the sum of all circuit wires over the integers, as well as linear functions over
the wires of the circuit. Unfortunately, Abboud, Rubinstein, and Williams [ARW17] recently proved
that there are no PCPs (with non-trivial query complexity) in this class. In fact, we show that in
terms of low-depth computation, the GIMSS-LRCC is as insecure as the ISW-LRCC (which it uses
as a building block), in the sense that any successful AC0 [⊕] leakage attack on the ISW-LRCC,
such as the one described above, gives rise to a related AC0 [⊕] leakage attack on the GIMSS-LRCC.
A direct (informal) consequence is that generalizing the LRCC-GIMSS to resist AC0 [⊕] leakage is
as hard as generalizing the ISW-LRCC to resist such leakage. We discuss this in more detail in
Section 5. We note that though OCL and AC0 [⊕] are incomparable leakage classes, they both
contain leakage functions that compute sums of wires of the circuit.

1.2.2 Towards Going Beyond AC0 [⊕]-Leakage

Even if one settles for inefficient simulation, there are still possible directions towards improving
and extending the SAT-respecting LRCC and the WI-PCP of [IWY16]. One such direction is to
strengthen the IWY-LRCC to resist leakage from wider classes than AC0 [⊕], which is motivated
both from a leakage-resilience prospective of protecting against wider leakage classes, as well as
from the ZK-PCP prospective. Indeed, in the context of constructing ZK-PCPs, resisting a wider
class of leakage functions translates to the ability to apply the transformation to a wider class of
PCPs. In particular, we might be able to apply the transformation to more efficient PCPs, and
thus improve the proof length of the resultant ZK-PCP.

Towards that end, we consider the LRCC of Miles and Viola [MV13]. The MV-LRCC follows
the standard paradigm of replacing wires and gates with bundles and gadgets, but diverges from
previous construction in using circuits that operate over non-commutative groups (instead of arith-
metic circuits over a field). This allows them to protect against large leakage classes. Specifically,
their LRCC withstands leakage from any function class against which average-case lower bounds are
known, including AC0 [⊕] circuits (when they have few XOR gates). Moreover, assuming L 6= NC1,
their LRCC resists NC1-leakage [Mil14]. We note that similar to [FRR+10], the MV-LRCC has a
universal simulator, so using it in the transformation of [IWY16] will only give WI-PCPs (and not
ZK-PCPs).

The MV-LRCC is not SAT-respecting, due to two reasons. First, it uses computations over a
group to emulate boolean computations, so one must ensure that the inputs to the leakage-resilient
circuit encode bits. Second, it relies on structured randomness to achieve leakage-resilience. To
address the first issue, one needs to design some leakage-resilient test to check that the inputs
correspond to bits. As noted above, in a field this can be done by checking that the inputs are
zeros of the polynomial x · (x− 1). Therefore, we need to extend this check to a non-commutative
group. In Section 6 we design a gadget that performs this test while preserving leakage-resilience.

Addressing the second issue is more involved, and we currently do not know how to solve it. We
review the obstacles in trying to extend the ideas of [IWY16] to non-commutative rings. Recall that
the FRRTV-LRCC [FRR+10] is not SAT-respecting because it employs structured randomness to
mask intermediate computations. Ishai et al. [IWY16] describe a variant of the FRRTV-LRCC
that is SAT-respecting, in which the leakage-resilient circuit Ĉ includes an additional component
checking that the randomness has the “right” structure. To preserve leakage-resilience (with an
inefficient simulator), the final construction is more involved. For a circuit C, let ĈF denote
the leakage-resilient circuit obtained from C by applying the FRRTV-LRCC. The leakage-resilient

8

circuit Ĉ of [IWY16] contains two copies of ĈF , as well as a component CR verifying that at least
one of the copies used “well-formed” randomness (i.e., randomness with the correct structure).
An important property of CR which is crucial for the leakage-resilience guarantee is that it hides
which of the copies used well-formed randomness.4 To obtain these properties, Ishai et al. [IWY16]
crucially rely on the fact that the FRRTV-LRCC operates over a field. In particular, a field is both
commutative and has a 0. Thus, the outcome 0 of a product a× b = 0 erases all information about
which of a, b was 0. Both properties are not satisfied by non-commutative rings, and we therefore
do not know how to design a similar test for the MV-LRCC.

1.3 Towards WI-PCPs of Proximity from LRCCs

We generalize the LRCC-to-PCP construction of [IWY16] to apply also to PCPs of Proximity
(PCPPs), and reduce the security of the construction to the task of designing a code with “good”
distance that resists AC0 [⊕] leakage.

Informally, PCPPs generalize PCPs by allowing the verifier, which has oracle access to his input
x and a purported proof, to check that x ∈ L for an NP-language L by querying only few bits of
the input x (in addition to querying few proof bits). If x is accepted then the verifier is guaranteed
that with high probability x is close (in relative hamming distance) to some x′ ∈ L. ZK-PCPPs
have the added feature that the view of any verifier querying a bounded number of input or proof
bits can be efficiently simulated by making the same number of queries to the input oracle x alone.
We say that a PCPP system is WI if this holds with an inefficient simulator.

Generalizing the transformation of [IWY16] to work for PCPPs turns out to be non-trivial, and
requires overcoming several obstacles, as we now describe. Recall that in the transformation, the
prover proves to the verifier that Ĉx is satisfiable, where Ĉx is the SAT-respecting and leakage-
resilient version of the verification circuit C of the NP-relation, with the input x hard-wired into
it.

The first obstacle we face in generalizing this construction to work for PCPPs is that the PCPP
verifier does not know x, so we cannot hard-wire x into C. The natural solution would be to apply
the LRCC to C (without hard-wiring x), and use x as part of the witness proving that the leakage-
resilient Ĉ is satisfiable. Clearly, this would not work since the input and witness have significantly
different roles: the verifier is only interested in verifying the existence of some satisfying witness,
whereas the verifier needs to verify its specific input oracle satisfies the circuit. Thus, the verifier
must check consistency of the encoded input x̂ (used in Ĉ) with its own input oracle x.

Therefore, we turn our attention to the question of verifying consistency of an encoding x̂ with a
given x, for which it suffices to show how to check that b̂ encodes a given bit b. (Indeed, given such
a method, longer strings can be checked by checking a random subset of their bits; we note that
the encoding used in [IWY16] anyway encodes long messages by encoding every bit separately.)
Notice that the statement “b̂ encodes b” is a statement in P (i.e., in deterministic polynomial time),
and verifying it is made non-trivial by the fact that it should be done with only few queries to b̂.
This is because the query complexity, i.e., the number of bits the verifier reads from the proof, is
an important measure of a PCPP system which we would like to minimize. To allow the verifier
to check such claims with few queries, we give it an additional PCPP that attests to the fact that

4Indeed, given the output y of C, the unbounded leakage-resilience simulator finds an arbitrary input x′ such
that C (x′) = y, honestly emulates Ĉ on an encoding of x′, and uses this to generate the leakage. The proof uses a

hybrid argument in which the real-world input of the copies of ĈF are replaces with encodings of x′ one copy at a
time. Replacing the input to a copy of ĈF requires using ill-formed randomness in this copy. Indistinguishability of
adjacent hybrids relies on the fact that CR hides which (and how many) of the copies use well-formed randomness.
We refer the interested reader to [IWY16] for additional details.

9

b̂ encodes b. It is important to note that this PCPP need not provide any ZK guarantee. Notice

that since the verifier doesn’t read its entire input
(
b̂, b
)

, the best one can hope for is that if the

verifier accepts then b̂ is close to an encoding of b. Consequently, the underlying encoding scheme
must have good distance. Otherwise, by flipping few bits one can change an encoding of 0 to an
encoding of 1, and so the fact that b̂ is close to an encoding of b doesn’t rule out the possibility
that it actually encodes 1− b, i.e., that the input used in Ĉ is inconsistent with the actual input x
of the verifier.

However, the LRCC of [IWY16] cannot use an encoding scheme with good (in fact, any even
non-trivial) distance, because the SAT-respecting property crucially relies on the fact that any
input to the leakage-resilient circuit is a valid encoding of some input for the original circuit. Thus,
we modify the LRCC of [IWY16] to take part of its input in the clear, and guarantee an “average-
case” leakage-resilience property when this part of the input is encoded using a leakage-resilient
encoding. Crucially, this average-case leakage-resilience property does not necessitate encoding the
input using the same encoding scheme which the LRCC uses to perform the internal computations.
We then show that this average-case leakage-resilience property, though weaker than standard
leakage-resilience, is nonetheless sufficient to obtain WI-PCPPs.

We emphasize that obtaining soundness and WI simultaneously in our PCPP system requires
encoding the inputs to the leakage-resilient circuit using an encoding scheme with “good” distance
that resists AC0 [⊕] leakage. We do not currently know how to construct such a code, or even
whether such a code exists.

We provide a more detailed description, including the full transformation, in Section 7.

1.4 On the Limits of the ZK-PCP of [KPT97]

We now explain why adaptive verification, and a polynomial blowup in the proof length, are inherent
to the ZK-PCP construction of [KPT97].

At a very high level, [KPT97] provide a general transformation from a PCP with ZK against
the honest verifier in which the honest verifier queries a small (polylogarithmic) number of proof
bits, to a PCP with full-fledged ZK. The transformation employs an unconditionally secure oracle-
based commitment primitive called a “locking scheme”. The fact that the underlying PCP has
small query complexity (polynomial in the security parameter) is crucial for the construction. As
any such PCP necessarily has a large soundness error, they amplify soundness through repetition.
However, since the original proof is only secure against a verifier making few queries, each iteration
in the amplification should use a different proof, so the proof has to be duplicated, causing a
polynomial blowup.

Moreover, to move from ZK against only the honest verifier to full-fledged ZK, the idea is to
“mix” the proof symbols, where the honest verifier’s queries are “translated” to a different (random)
set of queries of the honest verifier, and the locations of these new queries are then revealed to the
verifier. Thus, the verifier must adaptively make queries to the proof: the first set of queries
establishes the locations of the queried symbols in the “mixed” proof, and the second set of queries
reads those bits. (The adaptivity of the verifier in the construction is actually larger.) Finally,
we note that the use of locking schemes in of itself inherently causes a polynomial blowup and
adaptive verification, due to the information-theoretic properties of the locking scheme. We note
that though quasilinear-length PCPs were not known at the time, it is even now unclear how to
leverage the constructions we have today [BGH+04, Din06, BS08, Mie08] to improve the proof
length of ZK-PCPs.

10

2 Preliminaries

Parts of this section were taken almost verbatim from [IWY16, GIW17].
Let F be a finite field, and Σ be a finite alphabet (i.e., a set of symbols). In the following,

function composition is denoted as f ◦ g, where (f ◦ g) (x) := f (g (x)). If F,G are families of
functions then F ◦G := {f ◦g : f ∈ F, g ∈ G}. For a vector ~x ∈ Σn, and a subset I ⊆ [n], we use ~xI
to denote the restriction of ~x to the indices in I, i.e., ~xI = (xi)i∈I . For a randomized algorithm A
taking input x, we sometimes make the random choices of A explicit by writing A (x; r) to denote
that A has input x and uses random string r. If D is a distribution then X ← D, or X ∈R D,
denotes sampling X according to the distribution D. Given two distributions X,Y , SD (X,Y)
denotes the statistical distance between X and Y . For a natural n, negl (n) denotes a function that
is negligible in n, and poly (n) denotes a polynomial in n. For a function family L, we sometimes use
the term “leakage family L”, or “leakage class L”. In the following, n,m denote the input length,
t denotes a security parameter, and d, s denote depth and size, respectively (e.g., of circuits, as
defined below).

Circuits. We consider boolean circuits C over the set X = {x1, · · · , xn} of variables. C is a
directed acyclic graph whose vertices are called gates and whose edges are called wires. The wires
of C are labeled with functions over X. Every gate in C of in-degree 0 has out-degree 1 and is
either labeled by a variable from X and referred to as an input gate; or is labeled by a constant
α ∈ {0, 1} and referred to as a constα gate. Following [FRR+10], all other gates are labeled by one
of the operations ∧,∨,¬, or copy, where ∧,∨ vertices have fan-in 2 and fan-out 1; copy has fan-in
1 and fan-out 2, where the labels of the outgoing edges carry the same function as the incoming
edge; and ¬ has fan-in and fan-out 1. We will also consider boolean circuits that additionally have
⊕ gates of unbounded fan-in and fan-out. We write C : {0, 1}n → {0, 1}k to indicate that C is a
boolean circuit with n inputs and k outputs. The size of a circuit C, denoted |C|, is the number of
wires in C, together with input and output gates.

We also consider arithmetic circuits C over a finite field F and the set X. Similarly to the
boolean case, C has input and constant gates, and following [FRR+10], all other gates are labeled
by one of the following functions +,−,× or copy, where +,−,× are the addition, subtraction,
and multiplication operations of the field (i.e., the outgoing wire is labeled with the addition,
subtraction, or product (respectively) of the labels of the incoming wires), and these vertices have
fan-in 2 and fan-out 1; and copy vertices have fan-in 1 and fan-out 2, with the same operation as
in the boolean case. We write C : Fn → Fk to indicate that C is an arithmetic circuit over F with n
inputs and k outputs. We use AC0 [⊕] to denote the class of all boolean circuits of constant depth
and polynomial size (in the input length) with ∧,∨ gates of unbounded fan-in and fan-out, ¬ gates
of unbounded fan-out, and a polylogarithmic number of ⊕ gates of unbounded fan-in and fan-out.
Somewhat abusing notation, we sometimes use AC0 [⊕] to denote the class of functions computable
by such circuits.

Encoding Schemes. An encoding scheme E over alphabet Σ is a pair (Enc,Dec) of algorithms,
where the encoding algorithm Enc is a PPT algorithm that given a message x ∈ Σn outputs an en-
coding x̂ ∈ Σn̂ for some n̂ = n̂ (n); and the decoding algorithm Dec is a deterministic algorithm, that
given an x̂ of length n̂ in the image of Enc, outputs an x ∈ Σn. Moreover, Pr [Dec (Enc (x)) = x] = 1
for every x ∈ Σn. It would sometimes be convenient to explicitly describe the randomness used by
Enc, in which case we think of Enc as a deterministic function Enc (x; r) of its input x, and ran-
dom input r. By default, the encoding schemes considered in this work encode each input symbol
separately, i.e., for x = (x1, . . . , xn), Enc (x) = (Enc (x1) , . . . , (xn)).

11

Parameterized encoding schemes. We consider encoding schemes in which the encoding and
decoding algorithms are given an additional input 1t, which is used as a security parameter. Con-
cretely, the encoding length depends also on t (and not only on n), i.e., n̂ = n̂ (n, t), and for
every t the resultant scheme is an encoding scheme (in particular, for every x ∈ Σn and every
t ∈ N, Pr

[
Dec

(
Enc

(
x, 1t

)
, 1t
)

= x
]

= 1). We call such schemes parameterized. Furthermore, we
sometimes consider encoding schemes that take a pair of security parameters 1t, 1tin . (tin is used in
cases when the encoding scheme employs an “internal” encoding scheme, and is used in the internal
scheme.) In such cases, the encoding length depends on n, t, tin, and the resultant scheme should
be an encoding scheme for every t, tin ∈ N. We will usually omit the term “parameterized”, and
use “encoding scheme” to describe both parameterized and non-parameterized encoding schemes.

2.1 Leakage-Resilient Circuit Compilers

In this section we define leakage resilient circuit compilers. We first define the notion of a circuit
compiler.

Definition 2.1 (Circuit Compiler). A circuit compiler over F is a pair (Comp,E) of algorithms
with the following syntax.

• E = (Enc,Dec) is an encoding scheme, where Enc on input x ∈ Fn, and 1t, 1tin , outputs a
vector x̂ of length n̂ for some n̂ = n̂ (n, t, tin).

• Comp is a polynomial-time algorithm that given an arithmetic circuit C over F, and 1t,
outputs a (randomized) arithmetic circuit Ĉ.

We require that (Comp,E) satisfy the following correctness requirement. There exists a negligi-
ble function ε (t) = negl (t) such that for any arithmetic circuit C, and any input x for C, we have

Pr
[
Ĉ (x̂) = C (x)

]
= 1, where x̂← Enc

(
x, 1t, 1|C|

)
.

A boolean circuit compiler is defined similarly, except that it operates on boolean circuits C.

We consider circuit compilers that are also “sound”, meaning that satisfying inputs for the
compiled circuit exist only if the original circuit is satisfiable. As discussed in Section 1.2.1 this is
non-trivial because one might possibly satisfy the compiled circuits using inputs that do not encode
any inputs to the original circuit.5

Definition 2.2 (SAT-respecting circuit compiler). A circuit compiler (Comp,E) is SAT-respecting
if it satisfies the following soundness requirement for every circuit C : Fn → F. If Ĉ = Comp(C)
is satisfiable then C is satisfiable, i.e., if Ĉ (x̂∗) = 0 for some x̂∗ ∈ Fn̂, then there exists an x ∈ Fn
such that C (x) = 0. (For F = F2, we require that if Ĉ outputs 1 on some input, then so does C.)

Next, we define leakage-resilience of a circuit compiler. The following notation will be useful.

Notation 2.3. For a Circuit C, a leakage function ` : F|C| → Fk for some natural k, and an input
x for C, [C, x] denotes the wire values of C when evaluated on x, and ` [C, x] denotes the output
of ` on [C, x].

5We note that LRCCs were defined for general circuits, whose output may be long. In this work, we focus on
circuits that output a single bit or field element, because the SAT-respecting property is only meaningful for such
circuits.

12

Definition 2.4 (LRCC). Let t be a security parameter, and F be a finite field. For a function class
L, ε (n) : N → R+, and a size function S (n) : N → N, we say that (Comp,E) is (L, ε (t) ,S (n))-
leakage-resilient if there exists a PPT algorithm Sim such that the following holds. For all suffi-
ciently large t, every arithmetic circuit C over F of input length n and size at most S (n), every

` ∈ L of input length
∣∣∣Ĉ∣∣∣, and every x ∈ Fn, we have SD

(
` [Sim (C,C (x))] , `

[
Ĉ, x̂

])
≤ ε (t), where

x̂← E
(
x, 1t, 1|C|

)
.

If the above holds with an inefficient simulator Sim, then we say that (Comp,E) is (L, ε (t) ,S (n))-
relaxed leakage-resilient.

Probing Leakage. One leakage class which we consider in this work is the class of t-
probing (or t-probing attacks) for a parameter t ∈ N with input length n over some field
F, which consists of all functions that output t symbols of their input. Formally: Lt,n,F :={
` : Fn → Ft : ∃I ⊆ [n] , |I| = t s.t. ∀x ∈ Fn, ` (x) = xI

}
.

2.2 Gadget-Based Leakage-Resilient Circuit Compilers

In this section we describe the paradigm of gadget-based LRCCs. We note that all LRCCs consid-
ered in this work are gadget-based. We describe the compilers over a finite field F, which can be
naturally adjusted to the boolean case as well. At a high level, given a circuit C, a gadget-based
LRCC replaces every wire in C with a bundle of wires, which carry an encoding of the wire value,
and every gate with a sub-circuit that emulates the operation of the gate on encoded inputs. We
now describe this technique in more details.

Gadgets. A bundle is a string of field elements, encoding a field element according to some
encoding scheme E; and a gadget is a circuit which operates on bundles and emulates the operation
of the corresponding gate in C. A gadget has both standard inputs, that represent the wires in
the original circuit, and masking inputs, that are used to achieve privacy. More formally, a gadget
emulates a specific boolean or arithmetic operation on the standard inputs, and outputs a bundle
encoding the correct output. Every gadget G is associated with a set MG of “well-formed” masking
input bundles (e.g., in the LRCC of [FRR+10], MG consists of sets of 0-encodings). For every
standard input x, on input bundles x̂ encoding x, and any masking input bundles m ∈ MG , the
output of the gadget G should be consistent with the operation on x. For example, if G computes
the × operation, then for every standard input x = (x1, x2), for every bundle encodings x̂ = (x̂1, x̂2)
of x according to E, and for every masking input bundles m ∈ MG , G (x̂,m) is a bundle encoding
x1 × x2 according to E. The privacy of the internal computations in the gadget will be achieved
when the masking input bundles of the gadget are uniformly distributed over MG , regardless of the
actual values encoded by the masking input bundles.

Gadget-based LRCCs. In our constructions, the compiled circuit Ĉ is obtained from a circuit
C by replacing every wire with a bundle, every gate with the corresponding gadget, and adding
decoding sub-circuits (computing the decoding function of E) following the output gates of C.
Recall that the gadgets also have masking inputs. These are provided as part of the encoded input
of Ĉ, in the following way. E = (Enc,Dec) uses an “inner” encoding scheme Ein =

(
Encin,Decin

)
,

where Enc uses Encin to encode the inputs of C, concatenated with κ masking values (whose identity
is determined by the definition of the gadget, e.g., in [FRR+10] the masking values are all zero) for
a sufficiently large κ; and Dec uses Decin to decode its input, and discards the last κ symbols.

13

2.3 Zero-Knowledge and Witness-Indistinguishable Probabilistically Checkable
Proofs

We now define PCPs with zero-knowledge guarantees. Informally, these are PCPs with the addi-
tional property that the view of any (possibly malicious) verifier that is restricted in the number
of queries it can make to the proof, can be simulated given only the input.

Definition 2.5 (ZK- and WI-PCPs, [KPT97]). A probabilistic proof system (P, V) is a Zero-
Knowledge Probabilistically Checkable Proof (ZK-PCP) system for an NP-relation RL = RL (x,w),
if the following holds.

• Syntax. The prover P has input ε, 1q
∗
, x, w, and outputs a proof π for (x,w) (i.e.,

P
(
ε, 1q

∗
, x, w

)
defines a distribution over proofs for (x,w)). The verifier V has input ε, q∗, x,

and oracle access to π, and outputs either acc or rej.

We associate with P, V as above the following efficiency measures. The alphabet Σ =
Σ (ε, q∗, |x|) over which π is defined; The length ` = ` (ε, q∗, |x|) of the proof π; the query
complexity q = q (ε, q∗, |x|) of V (i.e., the number of queries V makes to his oracle); and the
randomness complexity r = r (ε, q∗, |x|) of V (namely, the number of random bits it uses).

• Semantics. (P, V) should have the following properties.

– Completeness. For every (x,w) ∈ R and every proof π ∈ P
(
ε, 1q

∗
, x, w

)
,

Pr [V π (ε, q∗, x) = acc] = 1, where the probability is over the randomness of V .

– Soundness. For every x /∈ LR and every π∗, Pr
[
V π∗ (ε, q∗, x) = acc

]
≤ ε.

– (ε, q∗)-Zero-Knowledge (ZK). For every (possibly malicious) verifier V ∗ that reads at
most q∗ proof symbols there exists a PPT simulator Sim such that for every (x,w) ∈ RL,
SD
(
VV ∗,P (ε, q∗, x, w) ,Sim

(
ε, 1q

∗
, x
))
≤ ε where VV ∗,P (ε, q∗, x, w) denotes the view of

V ∗ given input x and oracle access to a proof π generated by P
(
ε, 1q

∗
, x, w

)
.

If the above holds with an inefficient simulator, we say the PCP system is (ε, q∗)-witness
indistinguishable.

In Section 7.1 we defined ZK- and WI-PCPs of Proximity.

3 Extensions of the ISW-LRCC [ISW03]

In this section we describe a variant of the ISW-LRCC over F3, which we conjecture to be secure
against AC0 [⊕]-leakage. We first briefly recall the original ISW-LRCC. The ISW-LRCC operates
over boolean circuits with AND and NOT gates. It encodes the inputs using the parity encoding
(which replaces a bit b with a random bit-string whose parity is b), and provides gadgets that
emulate NOT and AND gates. The NOT gadget simply applies a NOT gate on the first element
of the input encoding. The AND gadget uses the observation that given two parity encodings
â = (a1, . . . , am) , b̂ = (b1, . . . , bm) of values a, b,

∑
i,j aibj = ab. Using this observation, the AND

gadget computes, for every i 6= j, an additive secret sharing of aibj + ajbi into 2 shares, and the
i’th output of the gadget is the sum of all secret shares with index i, together with aibi. (See
Construction 3.3 below for more details.)

Extending the construction to work over F3 requires generalizing the gadgets to work over F3.
As we show in Construction 3.3 below, this can be achieved with minor alterations to the original
construction. However, using arithmetic circuits over F3 to emulate boolean circuit introduces the
additional complication that the input bundles are no longer guaranteed to encode bits. Thus,

14

we design a simple circuit Cinp : {0, 1} → {0, 1} to check that the inputs correspond to bits.6

Given a circuit C : {0, 1}n → {0, 1}, we define C ′ : {0, 1}n → {0, 1} as follows: C ′ (x1, . . . , xn) =
C (x1, . . . , xn)∧Cinp (x1)∧ . . .∧Cinp (xn). We then compile C ′ using the modified ISW-LRCC (with

encodings and gadgets that operate over F3). As we show in Lemma 3.6 below, Ĉ ′ (x̂1, . . . , x̂n) = 1
if and only if for every 1 ≤ i ≤ n, x̂i encodes some xi ∈ {0, 1}, and additionally C (x1, . . . , xn) = 1.

Notice that we add the input-checker circuit Cinp to the circuit C before it is compiled into
its leakage-resilient counterpart. This will be useful when arguing leakage resilience. Specifically,
the compiled circuit C ′ now includes the input checker, and we can argue leakage-resilience of C ′

directly, without having to explicitly consider the input checker.
We now formalize this intuition, starting with the input checker.

Construction 3.1 (Input checker Cinp). Cinp : {0, 1} → {0, 1} is defined as Cinp (x) = ¬ (x ∧ ¬ (x)).

Next, we describe the encoding scheme used in our construction. Following [ISW03], we use t to
denote the security parameter of the encoding scheme, namely the scheme is secure against probing
of t wires. For simplicity, we define encoding for a single element in F3. This can be extended to
encoding vectors of elements over F3 by encoding each element separately.

Definition 3.2 (Mod-3 encoding scheme). Let t ∈ N be a security parameter, and m := 2t + 1.
The mod-3 encoding scheme E3 = (Enc3,Dec3) over F3 is a parameterized encoding scheme defined
as follows:

• For every input x ∈ F3, and security parameter t ∈ N, Enc3
(
x, 1t

)
= (x1, . . . , xm), where

x1, . . . , xm are random in F3 subject to the constraint that
∑m

i=1 xi = x.

• For every t ∈ N, and every (x1, . . . , xm) ∈ Fm, Dec3 (x1, . . . , xm) =
∑m

i=1 xi (mod 3).

We now describe the gadgets used in our construction.

Construction 3.3 (Gadgets for ISW-LRCC over F3). Let E3 = (Enc3,Dec3) be the mod-3 encoding
scheme of Definition 3.2. The gadgets are arithmetic circuits over F3 that emulate the boolean
operations NOT and AND.

The NOT gadget G¬: takes as input â = (a1, . . . , am) ∈ Enc3
(
a, 1t

)
. It outputs

(2a1 + 1, 2a2, . . . , 2am).7

The AND gadget G∧: takes as input â = (a1, . . . , am) ∈ Enc3
(
a, 1t

)
and b̂ = (b1, . . . , bm) ∈

Enc3
(
b, 1t

)
, as well as masking inputs {zij}1≤i<j≤m which are uniformly random in F3, and operates

as follows.

1. For every 1 ≤ i < j ≤ m, compute zji = (2 · zij + ai · bj) + aj · bi.8

2. For every 1 ≤ i ≤ m, compute ci = ai · bi +
∑

j 6=i zij .

It is easy to see that if the inputs to G¬,G∧ encode bits then the outputs are encodings of the
correct values (i.e., the NOT and AND of the inputs, respectively).

6Since we have defined Cinp to operate over bits, this check seems useless. However, in the final construction Cinp

will be implemented using an arithmetic circuit over F3, in which case the test will be meaningful.
7In [ISW03], the NOT gadget simply negates the first coordinate.
8In [ISW03], zji = (zij ⊕ ai · bj) ⊕ aj · bi. Intuitively, zij , zji is an additive secret sharing of aibj + ajbi. Notice

that in F2, −zij = zij , whereas in F3 for zij ∈ {0, 1}, −zij = 2zij , which is why we multiply by 2.

15

Construction 3.4 (ISW-LRCC variant over F3). Let t, tin ∈ N be security parameters, and n ∈ N
be an input length parameter. Let m = 2t+ 1, and let E3 = (Enc3,Dec3) be the encoding scheme
of Definition 3.2. The LRCC is defined as follows.

• The encoding scheme E = (Enc,Dec) operates as follows:

– for every x ∈ Fn, Enc
(
x, 1t, 1tin

)
=
(
Enc3

(
x, 1t

)
, r
)

for r ∈R F(tin+n)·M
3 , where M =

m(m−1)
2 is the number of random values used in the gadget G∧. (Intuitively, r provides

the randomness needed for all the AND gadgets in the compiled circuit.)

– Dec
(
(x̂, r) , 1t, 1tin

)
= Dec3

(
x, 1t

)
.

• The compiler, given a circuit C : {0, 1}n → {0, 1} with s AND gates, outputs the circuit

Ĉ : Fn+(s+n)M
3 → F3 constructed as follows:9

– Let C ′ : {0, 1}n → {0, 1} such that C ′ (x1, . . . , xn) = C (x1, . . . , xn) ∧ (∧ni=1Cinp (xi)),
where Cinp is the input checker from Construction 3.1.

– Let Ĉ ′ denote the circuit obtained from C ′ when all ¬,∧ gates are replaced with G¬,G∧
gadgets, respectively.

– Ĉ is obtained from Ĉ ′ by concatenating the decoding circuit Dec to Ĉ ′’s output.

We make the following observations regarding the gadgets of Construction 3.3:

Observation 3.5. The gadgets of Construction 3.3 satisfy the following:

• For any a ∈ {0, 1}, and any (a1, . . . , am) ∈ Enc3
(
a, 1t

)
, G¬ (a1, . . . , am) = (c1, . . . , cm) such

that
∑m

i=1 ci = ¬ (a) (namely, the output encodes ¬ (a)).

• For any (a1, . . . , am) ∈ Enc3
(
2, 1t

)
, G¬ (a1, . . . , am) ∈ Enc3

(
2, 1t

)
(namely, the output encodes

2).

• For any a, b ∈ F3, any (a1, . . . , am) ∈ Enc3
(
a, 1t

)
, and (b1, . . . , bm) ∈ Enc3

(
b, 1t

)
,

G∧ ((a1, . . . , am) , (b1, . . . , bm)) = (c1, . . . , cm) such that
∑m

i=1 ci = a · b (namely, the output
encodes a · b).

We now show that Construction 3.4 is SAT-respecting. Recall that for arithmetic circuits, SAT-
respecting means that if Ĉ (x̂) = 0 for some x̂ (which isn’t necessarily a valid encoding), then there
exists an x such that C (x) = 0. However, since we are interested in compiling boolean circuits, and
we implement the field operations using any correct boolean sub-circuits, the property we actually
want is that if Ĉ (x̂) = 1 for some x̂, then there exists an x such that C (x) = 1, which we now
prove.

Lemma 3.6. Let C : {0, 1}n → {0, 1}, and let Ĉ be the circuit obtained from C in Construction 3.4.
If Ĉ (x̂) = 1 for some x̂ then there exits an x ∈ {0, 1}n such that C (x) = 1.

9Syntactically, the compiler should return a boolean circuit (i.e., a circuit operating over the same field as the

original circuit). To achieve this we implement the field operations used in Ĉ using boolean sub-circuits. However,

to simplify the description, we chose to describe Ĉ as an arithmetic circuit. We note that this doesn’t affect AC0 [⊕]-
leakage-resilience.

16

Proof. We know from Observation 3.5 that if the inputs of the gadgets of Construction 3.3 encode
bits then the output encodes the correct value (which, in particular, is also a bit). Therefore, if
the input encodings x̂1, . . . , x̂n of Ĉ are valid encodings of bits x1, . . . , xn then Ĉ (x̂1, . . . , x̂n) =
C (x1, . . . , xn), and in particular Ĉ (x̂1, . . . , x̂n) = 1 if and only if C (x1, . . . , xn) = 1.

Therefore, to prove the construction is SAT-respecting, it suffices to prove that if not all
x1, . . . , xn are bits, then Ĉ (x̂1, . . . , x̂n) = 0. (We note that x1, . . . , xn are well defined because
any vector x̂ ∈ Fn·m3 encodes some value.) Assume without loss of generality that x1 /∈ {0, 1}. We

claim in this case Ĉinp (x1) = 0, where Ĉinp is the circuit obtained from Cinp when all gates are
replaced with the corresponding gadgets.

To see why this holds, notice that if x1 /∈ {0, 1} then x1 = 2. Let (x1,1, . . . , x1,m) ∈ Enc
(
x1, 1

t
)

be some arbitrary encoding of x1. Then by Observation 3.5, G¬ (x1,1, . . . , x1,m) = (z1, . . . , zm) such
that

∑m
i=1 zi = 2. Again using Observation 3.5, G∧ ((x1,1, . . . , x1,m) , (z1, . . . , zm)) = (z′1, . . . , z

′
m)

such that
∑m

i=1 z
′
i = 1 (indeed, both inputs to G∧ encode 2 so the output encodes 2 · 2(mod3) = 1).

Finally, using Observation 3.5 again, G¬ (z′1, . . . , z
′
m) = (z′′1 , . . . , z

′′
m) such that

∑m
i=1 z

′′
i = 0, i.e.,

Ĉinp (x1,1, . . . , x1,m) encodes 0.
By Observation 3.5, the gadget G∧ is correct for all inputs in F3. Therefore, the fact that

Ĉinp (x1,1, . . . , x1,m) encodes 0 implies that Ĉ ′ outputs 0.

As discussed in Section 1.2.1, we do not currently know how to prove that Construction 3.4
resists AC0 [⊕]-leakage. However, as a sanity check, we show that the modified construction at least
is as secure as the original ISW-LRCC, by proving that it resists probing attacks. (For simplicity,
we consider the circuit Ĉ as described over F3, so each probed wire carries a field element in F3.)

Lemma 3.7. Construction 3.4 is secure against t-probing leakage.

The proof follows the security proof of [ISW03, Theorem 1], with slight modifications that are
needed due to the slightly modified construction. The main difference in the proof is due to the
slightly different security definition we use: in [ISW03], both the inputs and outputs of the circuit
were considered private, and any probing of the wires of the circuit excluding the input encoder and
output decoder should be simulated “from scratch”. We consider the output to be public (indeed,
this is needed when using LRCCs to construct ZK-PCPs), and require that any probing of the
wires of the circuit and the output decoder can be simulated given the output of the circuit. In the
proof, we account for this difference in definitions, and show how to adapt the proof for the case of
public output. We stress that we are able to protect against probes on the decoder because we do
not try to hide the output.

Proof of Lemma 3.7. Similar to [ISW03], we first construct a simulator that can perfectly simulate
t-probing of a single gadget G in Construction 3.4, given at most m− 1 shares of its inputs. Since
the inputs are shared using an additive secret sharing with m shares, any m−1 shares are uniformly
distributed in Fm−13 , and can therefore be simulated as random values.

Simulating an AND gate. Let w1, . . . , wt denote the probed wires of G, and denote its
inputs by â = (a1, . . . , am) , b̂ = (b1, . . . , bm). We define a set I ⊆ [m] of size |I| ≤ m− 1 such that
w1, . . . , wt can be perfectly simulated given the restriction of the inputs of G to I. This is done as
follows:

1. Initialize I = ∅ and w1, . . . , wt to be unassigned.

2. For every 1 ≤ k ≤ t:

17

(a) If wk is of the form ai, bi, aibi, zij or 2 · zij for some i 6= j, or a sum of values of this form,
then add i to I.

(b) Otherwise, wk is of the form aibj or 2 · zij + aibj for some i 6= j, in which case add both
i and j to I.

Notice that each wk adds at most two indices to I, so |I| ≤ 2t = m− 1. This completes the
description of I. The following steps describe how to simulate w1, . . . , wt given only âI , b̂I .

3. Assign values to the zij as follows:

(a) If i ∈ I and j /∈ I then assign to zij a random value in F3. Notice that if i < j then this
is exactly how zij is chosen in the construction. If j < i then from the definition of I,
zji does not appear in the computation of any wk. Since (zij , zji) is an additive secret
sharing of aibj + ajbi, when zji remains secret then zij is uniformly distributed, so the
simulated zij is distributed identically to the real zij (conditioned on the event that xji
remains hidden).

(b) If i, j ∈ I then the simulator knows ai, bi, aj , bj and can compute zij identically to the real
world, namely if i < j then zij is assigned a random value in F3 and zji = 2zij+aibj+ajbi,
otherwise zji is assigned a random value, and zij = 2zji + aibj + ajbi.

(c) If i /∈ I then leave zij unassigned. This will not affect the simulation since by definition
of I, zij is never used in the computation of any wk.

4. Simulate the values of any wire wk, 1 ≤ k ≤ t as follows:

(a) If wk is of the form ai, bi, aibi, zij for some i 6= j, or any sum of such values (including ci
as a special case) then since i ∈ I we know ai, bi and all zij have been perfectly simulated
in Step 3, so wk can be perfectly simulated.

(b) Otherwise, wk is of the form aibj or 2zij+aibj . By the definition of I, it holds that i, j ∈ I
so the simulator knows ai, bj . Additionally, zij has already been perfectly simulated in
Step 3b, so wk can be perfectly simulated.

Simulating a NOT gate. Let w1, . . . , wt denote the probed wires of G, and denote its input
by â = (a1, . . . , am). We define a set I ⊆ [m] of size |I| ≤ m − 1 such that w1, . . . , wt can be
perfectly simulated given the restriction âI of â to I. This is done as follows:

1. Initialize I = ∅ and w1, . . . , wt to be unassigned.

2. For every 1 ≤ k ≤ t, wk is of the form ai, 2ai or 2ai + 1. Add i to I.

3. For every 1 ≤ k ≤ t, notice that wk depends on a single ai, and i ∈ I so the simulator knows
ai. Therefore, the simulator can perfectly simulate wk.

In particular, notice that all wires ci, i ∈ I in the outputs of both NOT and AND gadgets can
be perfectly simulated in the simulation described above. This will be useful when constructing
the simulator for the entire circuit.

Finally, we use the gadget simulators to simulate the entire circuit. The simulator is given the
output y ∈ F3 of the circuit, and operates as follows. For each gadget G, it compute the set IG as
described above. Notice that since at most t wires are probed throughout the circuit, I := ∪GIG
has size |I| ≤ m − 1. Next, it simulates the probed wires in the gadgets, working from the inputs
to the outputs. For this strategy to work, we need to show that when simulating a gadget G, the

18

simulator already knows the restriction of G’s inputs to IG . This holds due to the observation made
above, that the wires ci, i ∈ IG′ can be perfectly simulated for every gadget G′. Thus, if the inputs
of G are the inputs of the circuit, then these are perfectly simulated by the simulator as uniformly
random values in F3. Otherwise, these are the outputs of a previous gadget G′, and therefore were
already perfectly simulated.

Finally, the simulator needs to simulate probes to the output decoder. Let â = (a1, . . . , am)
denote the input to the output decoder. Some subset of these values have already been assigned
during the simulation, however since at most m − 1 of these were already assigned values, there
exists some i∗ ∈ [m] such that ai∗ is unassigned. The simulator assigns random values to all
unassigned ai, i 6= i∗, and sets ai∗ = Σi 6=i∗ai− y. It then honestly applies the decoder to â and uses
the resultant wire values to answer the probes to the wires of the decoder.

It remains to prove that the simulation of the decoder wires is perfect. For that, it suffices
to prove that the simulated inputs to the decoder are perfectly simulated (because the simulator
honestly evaluates the decoder). To see why this holds, notice that any m − 1 shares of â are
uniformly distributed (due to the zij ’s), and the output determines the final share. That is exactly
how the shares are computed in the simulation, so the simulation is perfect.

4 Extensions of the ADF-LRCC [ADF16]

In this section we describe a variant of the ADF-LRCC that is SAT-respecting. Recall from Sec-
tion 1.2.1 that the ADF-LRCC uses a linear “multiplication friendly” encoding scheme in which,
roughly given a pair â = (a1, . . . , an) and b̂ = (b1, . . . , bn) of encodings of a, b (respectively), the
product c = ab can be computed as a linear combination of the products a1b1, . . . , anbn. Using this
property, Andrychowicz et al. design a multiplication gadget that is much more efficient than the
gadget of [ISW03]. They then instantiate the construction with Shamir’s secret sharing [Sha79] or
with AG codes [CC06], which are both error-correcting codes. We focus here on the Shamir-based
construction over fields F = Fq, where q is a prime.

When designing SAT-respecting LRCCs, using an error-correcting code as the underlying en-
coding has the disadvantage that not all vectors of field elements of the “right” length correspond
to valid encodings. That is, if Enc outputs elements in Fm for some m ∈ N, then there exist v̂ ∈ Fm
which are not valid encodings. Consequently, the leakage-resilient version Ĉ of a circuit C might
be satisfiable using invalid encodings (that do not encode any value), even if C is not satisfiable,
meaning the LRCC would not be SAT-respecting. Consequently, Ĉ must verify its inputs are valid
encodings. (Once the inputs are valid encodings, all intermediate encodings computed in Ĉ are
guaranteed to be valid encoding from the correctness of the compiler.)

Therefore, a SAT-respecting variant of the ADF-LRCC must verify the input encodings are
indeed valid encodings. Luckily, this check can be carried out using (almost only) the gadgets of
the ADF-LRCC construction (described in Construction 4.2), as we now explain.

The ADF-LRCC compiles arithmetic circuits over a finite field F into leakage-resilient coun-
terparts over F. It uses Shamir’s encoding scheme (Definition 4.1) to encode the field elements,
where encodings have length m = 2t + 2, and correspond to degree-t polynomials, represented
as a list of t + 2 coefficients.10 The ADF-LRCC uses also degree-2t encodings, and we represent

10Andrychowicz et al. [ADF16] set m = 2t+1 and use lists of t+1 coefficients. However, increasing m does not hurt
security or efficiency (since we are increasing m only by a constant). We need a larger m, and longer coefficient-list,
to verify validity of the input encodings.

19

those using 2t+ 2 coefficients.11 Notice that a polynomial p (x) represented as a list of t+ 2 coef-
ficients (of the monomials 1, x, . . . , xt, xt+1) is of degree t if and only if the leading coefficient is 0.
Thus, given the list of coefficients of p, we can easily verify that it has degree t. The question is
how to obtain, from a given encoding, the coefficients of the underlying polynomial without violat-
ing leakage-resilience. Our main observation is that the multiplication gadget of [ADF16] in fact
computes these coefficients.

In a little more detail, the multiplication gadget, given encodings â = (a1, . . . , am) and
b̂ = (b1, . . . , bm), computes ĉ = (a1 · b1, . . . , am · bm), masks ĉ by adding to it a degree-2t Shamir
encoding r̂ of a random field element, and decodes ĉ + r̂. (The multiplication gadget contains
additional steps which are not important for us, see Construction 4.2 for the full description of the
gadget.) If â, b̂ are degree-t encodings, then ĉ, and consequently also ĉ + r̂, are degree-2t encod-
ings.12 The decoding procedure reconstructs all the coefficients of the underlying polynomial, then
discards all except the free coefficient.

Since we are representing polynomials with one redundant coefficient (i.e., we include the co-
efficient of xt+1 in a degree-t polynomial, and the coefficient of x2t+1 in a degree-2t polynomial),
we can use the discarded coefficients to check validity of the encodings. In particular, â, b̂ are both
valid (i.e., correspond to degree-t polynomials) if and only if the leading coefficient when decoding
ĉ+ r̂ is 0. This can be checked without violating leakage-resilience because the coefficients are any-
way computed by the leakage-resilient circuit Ĉ, and any computation performed on the leading
coefficient can be simulated by setting it to 0 in the simulation. Indeed, this will perfectly simulate
the computation because in an honest execution the leading coefficient is guaranteed to be 0. This
intuition is formalized in Construction 4.5 below. We first define Shamir’s encoding scheme (this
is simply Shamir’s secret sharing scheme) and the ADF-LRCC multiplication gadget.

Definition 4.1 (Shamir’s encoding). Let F be a finite field, t ∈ N be a security parameter, and
m := t + 2. Let α1, . . . , αm ∈ F be m distinct field elements. Shamir’s encoding scheme ES =
(EncS ,DecS) over F is a parameterized encoding scheme defined as follows:

• For every input a ∈ F, and security parameter t ∈ N, EncS
(
x, 1t

)
operates as follows:

– Pick a1, . . . , at ∈R F.

– Set at+1 := 0.

– Let px (y) = x+
∑t+1

i=1 aix
i.

– Output (px (α1) , . . . , px (αm)).

• For every t ∈ N, and every x̂ = (x1, . . . , xm) ∈ Fm, DecS (x1, . . . , xm) interpolates the degree-
(t+ 1) polynomial p (y) =

∑t+1
i=0 aiy

i such that p (αi) = xi for every 1 ≤ i ≤ m,13 and output
x0.

The multiplication gadget of [ADF16] uses as a subroutine a randomness sampling procedure
called RandSamp which resists t-probing attacks. Informally, RandSamp

(
1t
)

samples a random
r ∈R F, and outputs a degree-t and a degree-2t encoding of r. Since the actual implementation
details of this procedure is of no importance to us, we refer the interested reader to [ADF16] for
the exact description of this procedure.

11In [ADF16], degree-t and degree-2t polynomials were represented using lists of t + 1 and 2t + 1 coefficients,
respectively.

12We note that r̂ is generated inside the leakage-resilient circuit, and is therefore guaranteed to have degree 2t.
13This is done by multiplying x̂ to the right with the inverse of the Vandermonde matrix.

20

Construction 4.2 (Multiplication gadget of ADF-LRCC [ADF16]). Let M denote the number
of random field elements used in RandSamp

(
1t
)
. The multiplication gadget takes as input â =

(a1, . . . , am) ∈ EncS
(
a, 1t

)
and b̂ = (b1, . . . , bm) ∈ EncS

(
b, 1t

)
, as well as masking inputs ~r ∈ FM .

It outputs ĉ = (c1, . . . , cm) ∈ EncS
(
a · b, 1t

)
computed as follows.

1. Sample (r̂′, r̂′′) = RandSamp
(
1t;~r

)
. (r̂′, r̂′′ are degree-t and degree−2t encodings, respectively,

of the same random field element r.)

2. For every 1 ≤ i ≤ m, compute vi = ai · bi.

3. Let v̂ = (v1, . . . , vm). Compute ŵ = v̂ + r̂′′.

4. Decode ŵ using DecS (from Definition 4.1), and let w denote the value which DecS outputs.

5. Set ẑ = (z1, ..., zn) such that zi = w for every 1 ≤ i ≤ m, and output ĉ = ẑ − r̂′.

We now use the multiplication gadget of [ADF16] to design an input-checker circuit, similar to
the one constructed in Section 3.

Construction 4.3 (Input checker Cinp). The input checker circuit Cinp : Fm×F2M× → F, whereM×
denotes the number of random field elements used in the multiplication gadget of Construction 4.2,
on input (x̂, ~r) operates as follows:

1. Apply the copy gadget of Construction 4.8 to x̂ to obtain two copies x̂′, x̂′′ encoding the same
value as x̂, where the random field elements used in the gadget are taken from the first half
of ~r.

2. Evaluate the multiplication gadget of Construction 4.2 on inputs (x̂′, x̂′), where the random
field elements used in the gadget are taken from the second half of ~r.

3. Let (a0, . . . , a2t+1) denote the field elements computed during the decoding of ŵ in Step 4 of
Construction 4.2.

4. Output 1− aq−12t+1, where q := |F|.

We make the following observation regarding the input checker, which follows directly from its
description and from Fermat’s little theorem.

Observation 4.4. For every x̂ ∈ Fm, and any ~r ∈ FM×:

• If x̂ ∈ EncS
(
x, 1t

)
for some x ∈ F, then Cinp (x̂, ~r) = 1.

• Otherwise, Cinp (x̂, ~r) = 0.

Finally, we combine the input checker with the ADF-LRCC to obtain a SAT-respecting variant.

Construction 4.5 (SAT-respecting ADF-LRCC variant). Let t, tin ∈ N be security parameters,
and n ∈ N be an input length parameter. Let m = 2t + 2, and let ES = (EncS ,DecS) be the
encoding scheme of Definition 4.1. The LRCC is defined as follows.

• The encoding scheme E = (Enc,Dec) operates as follows:

– for every x ∈ Fn, Enc
(
x, 1t, 1tin

)
=
(
EncS

(
x, 1t

)
, r
)
, where r ∈R Ftin·M , and M is the

number of random field elements used in the multiplication gadget of Construction 4.2.
(Intuitively, r provides the randomness needed for all the gadgets in the compiled circuit.)

21

– Dec
(
(x̂, r) , 1t, 1tin

)
= DecS

(
x̂, 1t

)
.

• The compiler, given a circuit C : Fn → F with s gates, outputs the circuit Ĉ constructed as
follows:14

– Let Ĉ ′ denote the circuit obtained from C when all gates are replaced with the corre-
sponding gadgets of the ADF-LRCC (as described in Constructions 4.2 and 4.8), and
the random field elements they use are taken from Ĉ’s second input.

– Let Ĉ ′′ : Fn·(m+M) → F such that Ĉ ′′ (x̂1, . . . , x̂m, ~r1, . . . , ~rm) =
∏n
i=1Cinp (x̂i, ~ri). (No-

tice that by Observation 4.4, Ĉ ′′ outputs 1 if x̂1, . . . , x̂m are valid encodings, otherwise
it outputs 0.)

– output the circuit Ĉ such that

Ĉ (x̂1, . . . , x̂m, r̂1, . . . , r̂m, r̂) = Ĉ ′ (x̂1, . . . , x̂m, r̂) · Ĉ ′′ (x̂1, . . . , x̂n, r̂1, . . . , r̂m)

+1− Ĉ ′′ (x̂1, . . . , x̂n, r̂1, . . . , r̂m) .

(Notice that the output is Ĉ ′ (x̂1, . . . , x̂m, r̂) if Ĉ ′′ (x̂1, . . . , x̂n, r̂1, . . . , r̂m) = 1, otherwise
it is 1.)

Next, we analyze Construction 4.5 and show it is leakage-resilient and SAT-respecting.

Lemma 4.6. Construction 4.5 is correct and SAT-respecting.

Proof. Notice first that if the inputs of Ĉ are valid degree-t Shamir encodings then by the correctness
of the ADF-LRCC, Ĉ emulates C, which implies the construction is correct. In particular, Ĉ
outputs 0 if and only if there exists a corresponding input for C (specifically, the inputs encoded
in Ĉ’s inputs) that causes C to output 0.

We show that if the inputs of Ĉ are not well-formed then Ĉ does not output 0. By Observa-
tion 4.4, if any of Ĉ’s inputs is not a valid degree-t Shamir encoding, then Cinp output 0, in which

case Ĉ ′′ outputs 0, so Ĉ outputs 1.

Lemma 4.7. Construction 4.5 is t-probing secure.

Proof. We prove security by reduction to the t-probing security of the ADF-LRCC, by using the
ADF-LRCC simulator to simulate any t-probing attack on Ĉ. First, notice that any probing of
wires in Ĉ ′, or wires of Ĉ ′′ which are part of the computation of Steps 1 and 2 in one of the copies of
the input checker Cinp of Construction 4.3, can be perfectly simulated by the ADF-LRCC simulator.
Indeed, though these were computed in Construction 4.5 as two separate circuits, one can think of
them as consisting of a single circuit C̃ consisting of C, as well as the multiplication gates of the
form xi · xi for every input 1 ≤ i ≤ n, where the outputs of these multiplication gates are never
used. Given this description, Ĉ ′ together with the first two steps of each Cinp copy are obtained by

applying the ADF-LRCC to C̃. Here, we also use the fact, discussed below, that the encoding d̂ of
1 used in the construction can be any arbitrary encoding.

It remains to explain how one can simulate the wires in Steps 3 and 4 of each Cinp (Construc-

tion 4.3), as well as the multiplication gate between the outputs of Ĉ ′, Ĉ ′′. The simulator simply
simulates these wire values by setting every a2t+1 in Step 3 of Construction 4.3 to 0, and the output
of Ĉ ′ to be the output of C which it obtained for the simulation, and outputs the wires probed by

14We note that the gadgets of Ĉ uses (s+ n)M random bits.

22

the leakage function. This is a perfect simulation because in an honest execution (i.e., when the
inputs of Ĉ are valid degree-t encodings), a2t+1 = 0 in all the copies of Cinp, and Ĉ emulates C so
in particular its output is the same as C.

We now describe the remaining gadgets of the ADF-LRCC. The gadgets use an encoding d̂ of
1 which is hard-wired into the compiled circuit (all gadgets use the same encoding).15 In [ADF16],
d̂ is sampled once and for all as a random encoding of 1, and hard-wired into the circuit. In the
context of constructing ZK-PCPs, this is problematic since the “LRCC to ZK-PCP” transformation
of [IWY16] requires a deterministic procedure of compiling a circuit C into its leakage-resilient
version Ĉ.16 One possible approach is to have Ĉ take d̂ as input, but for SAT-respecting this would
entail verifying that d̂ is a valid encoding, and moreover that it encodes 1. We provide a much

simpler solution, by simply having d̂ be a fixed encoding of 1, e.g., obtained as EncS

(
1, 1t;~0

)
(i.e.,

when encoding uses the all-0 string as randomness). We observe that this preserves leakage-resilient
since the security of the ADF-LRCC anyway does not depend on d̂ being private. Indeed, the ADF-
LRCC guarantees a strong notion of probing security which, roughly, protects against probing t
wires in each gadget.17 Thus if, for example, the circuit contains sufficiently many (≈ m/t) addition
gates then by probing t wires of d̂ in each gadget, the leakage function can leak the entire encoding
d̂, so security cannot rely on it being secret.

Andrychowicz et a. [ADF16] design addition and multiplication gadgets, as well as gadgets
emulating randomness-sampling gates that output a random field element, and copy gates that are
used to handle large fan-outs.

Construction 4.8 (Gadgets of ADF-LRCC [ADF16]). Let d̂ = EncS

(
1, 1t;~0

)
, let G× denote the

multiplication gadget of Construction 4.2, and let M denote the number of random field elements
used in G×.

The addition gadget: takes as input â ∈ EncS
(
a, 1t

)
and b̂ ∈ EncS

(
b, 1t

)
, as well as masking

inputs ~r ∈ FM . It outputs ĉ ∈ EncS
(
a · b, 1t

)
computed as follows. Let ẑ = â + b̂, then output

ĉ = G×
(
ẑ, d̂;~r

)
.

The randomness gadget: takes masking inputs ~r ∈ FM , and outputs ĉ ∈ EncS
(
r, 1t

)
for a

random r ∈R F, computed as follows. Compute (r̂′, r̂′′) = RandSamp
(
1t;~r

)
and outputs r̂′.

The copy gadget: takes as input â ∈ EncS
(
a, 1t

)
, and masking inputs ~r, ~r′ ∈ FM , and outputs

b̂, ĉ ∈ EncS
(
a, 1t

)
, computed as follows. Compute b̂ = G×

(
â, d̂;~r

)
and ĉ = G×

(
â, d̂;~r′

)
, and output(

b̂, ĉ
)

.

Further Extensions and Future Directions. We have described a SAT-respecting variant of
the ADF-LRCC using Shamir’s secret sharing. The ADF-LRCC of [ADF16] can use AG codes

15Specifically, the ADF-LRCC uses the multiplication gadget to “refresh” the encodings at the outputs of these
gadgets, i.e., replace them with “fresh” encodings of the same value. This is done by using the multiplication gadget
to multiply the encoding at the output of the gadget with the encoding d̂.

16This is because in the transformation, the claim “C is satisfiable” (i.e., is in the NP-complete language of circuit

satisfiability) is reduced to the claim “the leakage-resilient version Ĉ of C is satisfiable”. To verify this claim, the

verifier needs to know the structure of Ĉ, since this is the NP statement being verified. If the compilation of C into
Ĉ is deterministic then it can be locally applied by the prover and verifier. However, if the compilation is randomized
then the verifier does not know what randomness the prover used to generate Ĉ, and consequently does not know
the structure of Ĉ and cannot verify its satisfiability.

17The actual security guarantee is even stronger, but the weaker, and much simpler, description provided here is
sufficient for our needs.

23

as the underlying encoding scheme, and we leave it to future work to design an input checker for
AG codes. (One possible approach is to apply the parity check matrix of the code to the input
encodings, but this significantly diverges from the ADF-LRCC, so would require proving leakage-
resilience of this variant.) We note also that using an LRCC to construct a ZK-PCP requires the
LRCC to operate over boolean circuits. In the ADF-LRCC using AG encoding, this can be easily
obtained by implementing the field operations using constant-sized boolean circuits, since the field
F can have constant size. However, the Shamir-based construction requires using large fields (of
size O (t)) so implementing the field operations using boolean circuits in the natural way would
cause a loss in security. Finally, we note that our input checker Cinp (Construction 4.5), when
implemented using gates of fan-in 2, has depth log q = O (log t) due to the use of Fermat’s little
theorem in Step 4, which might be significant (e.g., when C has constant depth). It might be
possible to design a different input check that avoids this blowup.

5 Obstacles in Extending the GIMSS-LRCC [GIM+16] to Resist
AC0 [⊕]-Leakage

As discussed in Section 1.2.1, the GIMSS-LRCC cannot be used to construct ZK-PCPs because
the leakage class it resists does not contain any PCP. A natural direction would then be to try to
prove that the GIMSS-LRCC, or simple adaptations of it, resists leakage from a function class that
does contain a PCP, such as AC0 [⊕]. In this section, we explain why the GIMSS-LRCC is insecure
against AC0 [⊕]-leakage, and show that making it AC0 [⊕]-leakage-resilient would entail making the
ISW-LRCC leakage-resilient which, as discussed in Section 3 we do not currently know how to do.

To explain the limits of the GIMSS-LRCC, we first need to explain how it works. Goyal
et al. [GIM+16] design information-theoretically secure protocols in the OT-hybrid model that
allow a user, aided by a pair of “honest-but-curious” servers, to compute a function of her input
while preserving the privacy of the input and output even under Bounded Communication Leakage
(BCL) on the internals of the servers. Genkin et al. [GIW17] observed that one can obtain a BCL-
secure LRCC by implementing the server programs as circuits, and implementing the OT calls
using constant-sized sub-circuits. At a high level, given a circuit C, its leakage-resilient version is
constructed in three steps, as we now describe.

First, C is compiled into a “parity-resilient” circuit C⊕, which emulates C on encoded inputs
and resists leakage from the class of all parity function (namely, all functions that output the parity
of a subset of wires). More precisely, the inputs to C⊕ are small-bias encodings of constant length
(over F2) of C’s inputs.18 Roughly, such encodings fool linear distinguishers in the sense that a
linear distinguisher obtains only a small advantage in distinguishing between encodings of 0 and 1.
(We do not provide a formal definition of small-bias encoding because the exact properties of the
encoding are unimportant to us.) C⊕ uses a constant-sized gadget G to emulate C’s operation over
the small-bias encodings. We elaborate on the construction of the parity-resilient C⊕ below.

The second step is to use a GMW-style 2-party protocol π to emulate C⊕, gate-by-gate, on
additive secret shares of the input. This protocol uses an oracle to the functionality computed
by the gadget G, and outputs additive secret shares of the output. The third and final step is to
replace each oracle call to G with a constant number of OT calls, and convert the resultant 2-party
protocol into a boolean circuit (in which OT calls are implemented using a constant number of
gates).

Let C ′ denote the resultant circuit, which operates on encoded inputs, and returns encoded

18More specifically, every input of x is individually encoded using a bit string of length c for some constant c.

24

outputs. Specifically, the encoding of a bit first encodes the bit using the small-bias encoding, then
additively secret shares these encodings into two shares.

Notice that the final two steps in the construction provide no protection against AC0 [⊕]-leakage.
That is, C ′ resists AC0 [⊕] leakage only if C⊕ does. Intuitively, this is because AC0 [⊕] circuits can
decode the small-bias encoding and the secret sharing and thus recover the original wire values of
C⊕. More formally, assume C⊕ is not AC0 [⊕]-leakage-secure, and we show how to attack C ′ using
a leakage function in AC0 [⊕]. Let ` ∈ AC0 [⊕] be a leakage function that takes as input the wire
values of C⊕, and breaks AC0 [⊕]-leakage-security of C⊕. Consider the function `′ ∈ AC0 [⊕] that
takes as input the wire values of C ′, uses them to generate the wire values of C⊕ in the underlying
execution, and applies ` to the wire values. More specifically, each wire w of C⊕ is generated as
follows. If w is an input or output of G then its additive secret sharing appears in `′’s input, and
the value can be reconstructed from the shares using an AC0 [⊕] circuit. Otherwise, w is an internal
wire of G, in which case an AC0 [⊕] circuit can reconstruct the inputs and outputs of G from their
additive secret shares, and then use them to generate the entire internal wire values of G (because
G is a constant-sized circuit). Thus, `′ ∈ AC0 [⊕], and obtains the same distinguishing advantage
as `, so C ′ is not AC0 [⊕]-leakage-resilient.

Consequently, to obtain an AC0 [⊕]-leakage-resilient C ′, the underlying parity-resilient circuit
C⊕ must be AC0 [⊕]-leakage-resilient. We therefore turn our attention to the construction of parity-
resilient circuits, which are constructed in [GIM+16] in two steps. First, C is replaced with its
private counterpart Cp, namely a probing-secure circuit that emulates C over encodings. Second,
every wire w of Cp is replaced with a bundle carrying a constant-length small-bias encoding of w,
and the gates of Cp are replaced with a constant-sized gadget G⊕ emulating the gate operation over
the small-bias encodings. (The fact that the encodings and G⊕ have constant size is crucial for
obtaining leakage-resilience, since applying constant-sized computations to the wires of the circuits
doesn’t affect BCL leakage-resilience.)

Since the small-bias encodings, and G⊕, have constant size, a similar argument to the one
used above shows that C⊕ is AC0 [⊕]-leakage-resilient only if Cp is. Thus, in general, proving that
the GIMSS-LRCC is AC0 [⊕]-leakage-resilient reduces to constructing an AC0 [⊕]-leakage-resilient
circuit Cp. Moreover, the GIMSS-LRCC compiler instantiates the underlying private circuit with
the ISW-LRCC which, as discussed in Section 1.2.1, is not AC0 [⊕]-leakage-resilient, so the actual
LRCC constructed in [GIM+16] is not AC0 [⊕]-leakage-resilient. In summary, it seems that using
the GIMSS-LRCC gives no advantage (in the context of constructing ZK-PCPs) over directly
constructing a SAT-respecting AC0 [⊕]-leakage-resilient circuit compiler.

6 Extensions of the MV-LRCC [MV13]

In this section we describe approaches towards making the MV-LRCC of [MV13] SAT-respecting.
As noted in Section 1.2.2, this entails checking that (1) the input encodings encode bits, and (2) the
structured randomness used in the construction is “valid”, for an appropriate definition of “valid”.
We describe a method of checking (1) (as discussed in Section 1.2.2, we do not currently know how
to check (2)). We first describe the MV-LRCC.

The MV-LRCC. The compiler is designed over the alternating group A5, namely the group
of even permutations of a set of size 5, where group operations are implemented using boolean
circuits of constant size. For simplicity of the exposition, we follow [MV13] and describe the
construction using A5 operations. The MV-LRCC uses the following special elements of A5 (using
cycle notation): α = (1, 2, 3, 4, 5) , β = (1, 4, 2, 3, 5) and γ = (1, 2, 3, 5, 4). These elements satisfy

25

β = γαγ−1 and βαβα−1β−1β−1 = α. We use id to denote the identity element of A5.
We first describe the encoding scheme used in the construction.

Definition 6.1 (Group encoding scheme). Let t ∈ N be a security parameter. The group encoding
scheme Eg = (Encg,Decg) over A5 is a parameterized encoding scheme defined as follows:

• For every input x ∈ {0, 1}, and security parameter t ∈ N, Encg
(
x, 1t

)
= (x1, . . . , xt) ∈ At5,

where x1, . . . , xt are random subject to the constraint that
∏t
i=1 xi = id if x = 0, otherwise∏t

i=1 xi = α.19

• For every t ∈ N, and every (x1, . . . , xt) ∈ At5, Decg (x1, . . . , xt) computes
∏t
i=1 xi, outputs 0

if the product is id, otherwise it outputs 1.

Following [MV13], we assume without loss of generality that the circuit C : {0, 1}n → {0, 1} to
be compiled consists solely of NAND gates. Miles and Viola [MV13] design a NAND gadget that
emulates NAND gates, as well as a randomization gadget Gr that is used to “refresh” the encodings
at the output of NAND gadgets (replacing them with “fresh” encodings of the same values). We
note that the NAND gadget is a straight-forward emulation of the NAND gate over A5-encodings,
and it provides no leakage-resilience guarantee. The leakage-resilience of the circuit is obtained by
applying the randomization gadget Gr to the encoding at the output of each NAND gadget. Miles
and Viola [MV13] rely on the fact that Gr outputs a fresh encoding (of the same value) to prove
correctness and leakage resilience.

Our input-checking gadget Ginp. The input-checking gadget we construct verifies that its input
is a valid encoding of a bit. We follow the technique of [DPS12], who check conditions of the form∏
i xi ∈ {id, α} for group elements xi through a series of equations. (We note, however, that

since [DPS12] use equations over S5, whereas we work over the group A5, we need to use different
equations.) Our construction relies on the following fact.

Fact 6.2. Let E1, E2 : A5 → A5 be defined as E1 (g) = g ·α · g−1 ·α−1 and E2 (g) = (g1 · g)3, where
g1 = (5, 4, 3). Then for every g ∈ A5, E1 (g) = E2 (g) = id if and only if g ∈ {id, α}.

Proof. For every g ∈ A5, E1 (g) = id if and only if g is a power of α, i.e. if and only if g ∈{
id, α, α2, α3, α4

}
(since α has order 5). Therefore, it suffices to verify that for g ∈

{
id, α, α2, α3, α4

}
,

E2 (g) = id if and only if g ∈ {id, α}. This holds since g · id = g has order 3 and so does g ·α, while
g · α2, g · α3, g · α4 have orders 5,2,5 respectively, which do not divide 3.

Construction 6.3 (Input-checking gadget). The gadget takes as input x̂ ∈ At5, and outputs
ẑ =

(
ẑ(1), ẑ(2)

)
∈ A2t

5 such that Decg
(
ẑ(1), 1t

)
= Decg

(
ẑ(2), 1t

)
= id if and only if x ∈ Encg

(
0, 1t

)
∪

Encg
(
1, 1t

)
. It operates as follows.

1. Set û := (x1, x2, ..., xt−1, xt · α).

2. Compute ŷ ∈ (A5)
t as ŷ :=

(
u−1t , ..., u−11 · α−1

)
.

3. Compute ẑ′ ∈ (A5)
2t as ẑ = (û, ŷ). (This gives

∏
i ẑ
′
i = (

∏
i xi) · α · (

∏
i xi)

−1 · α−1).

4. Compute ẑ(1) ∈ (A5)
t as ẑ(1) :=

(
z′1 · z′2, z′3 · z′4, ..., z′2t−1 · z′2t

)
.

19Syntactically, Encg is not an encoding procedure because its input and output alphabets are different. However,
we use the A5 notation for clarity, where in fact each group element is represented using a bit-string, so the input
and output alphabets of Encg are both {0, 1}.

26

5. Compute û ∈ (A5)
t as û := (g1 · x1, x2, ..., xt).

6. Compute û′ ∈ (A5)
3t as û′ = (û, û, û). (This gives

∏
i û
′
i = (g1

∏
i xi)

3.)

7. Compute ẑ(2) ∈ (A5)
t as ẑ(2) :=

(
u′1 · u′2 · u′3, u′4, ..., u′2t−2 · u′2t−1 · u′2t

)
.

8. Compute and output ẑ :=
(
ẑ(1), ẑ(2)

)
.

We note that the correctness of the MV-LRCC relies on the fact that for every bundle in the
leakage-resilient circuit, the encoding x̂ = (x1, . . . , xt) carried on the bundle satisfies the following
multiplication property :

∏t
i=1 xi ∈ {id, α}. This property is not satisfied by our input-checking

gadget Ginp. However, this will not pose a problem in the construction because, as described below,
the outputs of Ginp will only be used to verify input consistency, and the leakage-resilient circuit
will contain a special decoding sub-circuit for decoding the outputs of Ginp, that will deal with
encodings that do not satisfy the multiplication property.

Input-Checking MV-LRCC variant. We now describe our variant of the MV-LRCC. Roughly,
the leakage-resilient circuit Ĉ it outputs emulates the leakage-resilient circuit of MV-LRCC, but
includes additional checks (using the input-checking gadget Ginp of Construction 6.3) to verify that
its inputs encode bits. The encodings at the outputs of the check gadgets are refreshed using the
randomization gadget Gr (similar to how it is used in [MV13] to refresh the encodings at the output
of NAND gadgets).

Construction 6.4 (Input-checking variant of the MC-LRCC). Let t, tin ∈ N be security parame-
ters, and n ∈ N be an input length parameter. Let Eg = (Encg,Decg) be the encoding scheme of
Definition 6.1. The LRCC is defined as follows.

• The encoding scheme E = (Enc,Dec) operates as follows:

– for every x ∈ {0, 1}n, Enc
(
x, 1t, 1tin

)
=

(
Encg

(
x, 1t

)
, ~r
)
, where ~r =(

~r(1),~l(1), . . . , ~r(M),~l(M)
)
∈
(
A2t

5

)M
for M = n + tin, and for every 1 ≤ i ≤ M ,

~r(i),~l(i) ∈ At5 are random subject to the constraint
∏t
j=1 r

(i)
j

∏t
j=1 l

(i)
j = id. (Intuitively,

~r provides the randomness needed for the Gr gadgets in the compiled circuit.)

– Dec
(
(x̂, ~r) , 1t, 1tin

)
= Decg

(
x, 1t

)
.

• The compiler, given a circuit C : {0, 1}n → {0, 1} with s wires, outputs the circuit Ĉ :
{0, 1}n·l × {0, 1}(s+2n)·2t·l → {0, 1} (where l denotes the length of the bit-representation of
elements in A5, see Remark 6.5 below) constructed as follows:

– Let Ĉ ′ denote the circuit obtained from C by the MV-LRCC of [MV13]. Concretely,
every NAND gate with m output wires is replaced with a NAND gadget, followed by
m parallel randomization gadgets Gr (the output bundle of the NAND gadget is fed as
input to each of these randomization gadgets). Moreover, for the randomization gadget
G following the (single) output wire of the NAND gate computing the output of C, the
output ô = (o1, . . . , ot) of G is fed into a decoding sub-circuit that simply computes∏t
i=1 oi in some arbitrary way. We note that the random field elements used by the

randomization gadgets are taken from Ĉ’s second input.

– Let Ĉ ′′ : {0, 1}n·l × {0, 1}2n·2t·l → {0, 1} be the circuit that on input
(
x̂(1), . . . , x̂(n)

)
and

masking inputs
(
~r(1), ~r(1)′, . . . , ~r(n), ~r(n)′

)
operates as follows.

27

∗ For every 1 ≤ i ≤ n, computes
(
ŷ(i), ŷ(i)′

)
:= Ginp

(
x̂(i)
)
.

∗ For every 1 ≤ i ≤ n, computes ẑ(i) := Gr
(
ŷ(i);~r(i)

)
, and ẑ(i)′ := Gr

(
ŷ(i)′;~r(i)′

)
.

∗ For every 1 ≤ i ≤ n, uses any correct tree of multiplication gates to compute

w(i) :=
∏t
j=1 z

(i)
j and w(i)′ :=

∏t
j=1 z

(i)′
j .

∗ Let C̃ : {0, 1}l → {0, 1} be any (constant-sized) correct circuit that outputs 1 if
its input is id (represented as a bit string), otherwise it outputs 0. Then output

∧ni=1

(
C̃
(
w(i)

)
∧ C̃

(
w(i)′)).

– output the circuit Ĉ such that

Ĉ
(
x̂1, . . . , x̂n, ~r1, ~r1

′ . . . , ~rn, ~rn
′, ~r
)

= Ĉ ′ (x̂1, . . . , x̂n, ~r) · Ĉ ′′
(
x̂1, . . . , x̂n, ~r1, ~r1

′, . . . , ~rn, ~rn
′)

(Notice that the output is Ĉ ′ (x̂1, . . . , x̂n, ~r) if Ĉ ′′
(
x̂1, . . . , x̂n, ~r1, ~r1

′, . . . , ~rn, ~rn
′) = 1,

otherwise it is 0.)

Remark 6.5 (representing group elements as bit strings). Construction 6.4 represents elements
of A5 as l-bit strings. We note that not all l-bit strings correspond to an element of A5, so to
guarantee SAT-respecting, Ĉ should also check that each length-l bit string given as part of its
input or masking input corresponds to a valid element of A5. Since l is constant, that can be done
using a constant-sized boolean circuit, and will not cause any loss in leakage-resilience.

We now show that if the masking inputs used in Ĉ are well-formed (i.e., of the form
(
~r,~l
)

such

that
∏
i ri
∏
i li = id) then Ĉ is satisfiable only if C is satisfiable.

Lemma 6.6. Assume all masking inputs
(
~r,~l
)

used in the circuit Ĉ of Construction 6.4 satisfy∏
i ri
∏
i li = id, then for every input (x̂1, . . . , x̂n) that satisfy Ĉ, there exists (x1, . . . , xn) ∈ {0, 1}n

such that C (x1, . . . , xn) = 1.

Proof. First, notice that by the definition of Ĉ, if it outputs 1 then for every 1 ≤ i ≤ n, w(i) =
w(i)′ = id, and moreover Ĉ ′

(
x̂(1), . . . , x̂(n)

)
= 1.

Second, conditioned on all masking inputs being well-formed, for every ŷ(i), ŷ(i)′ and ẑ(i), ẑ(i)′

computed in Ĉ ′′ it holds that
∏t
j=1 y

(i)
j =

∏t
j=1 z

(i)
j and

∏t
j=1 y

(i)′
j =

∏t
j=1 z

(i)′
j (from the correctness

of the randomization gadget when it uses well-formed masking inputs). Thus, by Fact 6.2, for every
1 ≤ i ≤ n,

∏t
j=1 ŷ

(i) =
∏t
j=1 ŷ

(i)′ = id implies that x̂(i) is a valid encoding of some xi ∈ {0, 1}.
Finally, since the masking inputs used in Ĉ are well-formed then Ĉ ′ on input x̂(1), . . . , x̂(n)

emulates C on input x1, . . . , xn, so C (x1, . . . , xn) = 1.

Next, we claim that Construction 6.4 is as leakage-resilient as the MV-LRCC of [MV13].

Lemma 6.7. Let n ∈ N be an input parameter, and L be a leakage class. For a circuit C, let
ĈMV denote its leakage-resilient variant obtained through the LRCC of [MV13]. Then for every
circuit C : {0, 1}n → {0, 1}, if ĈMV is (L, ε)-leakage-resilient for some ε, then the circuit Ĉ of
Construction 6.4 is (L, ε (1 + 2n))-leakage-resilient.

The proof of Lemma 6.7 is similar to the leakage-resilience proof of [MV13]. At a high level,
the leakage-resilience of the original MV-LRCC, and of our modified version in Construction 6.4,
follows from the randomization gadget. The randomization gadget Gr of [MV13] is both locally
reconstructible and rerandomizing. A gadget is rerandomizing if its output is a fresh encoding of

28

the value encoded in its input. Local reconstruction means that given the input and output encod-
ings (x̂, ŷ) of the gadget, there exists a “weak” simulator (specifically, whose computational power
is much weaker than the leakage functions) that can generate the entire wire values of the gad-
get, and the simulated wires are indistinguishable from the actual wire values of the gadget when
using random well-formed masking inputs, conditioned on its input and output being x̂, ŷ, respec-
tively. (See Definitions 7.8 and 7.9 in Section 7.1 for the formal definitions.) The randomization
gadgets in [MV13] randomize the outputs of the NAND gadgets and thus effectively “break” the
correlations between consecutive NAND gates in the circuit (indeed, in the leakage-resilient circuit
the corresponding NAND gadgets will be separated by a randomization gadget). This allows the
simulator to arbitrarily fix the outputs of all NAND gadgets, and later “account” for these values
consistently using the local reconstruction of Gr.

Proof of Lemma 6.7 (sketch). Let L be a leakage class against which the LRCC of [MV13] is secure,
and let Sim′ be the corresponding simulator. We describe the simulator Sim that simulates L leakage
on the circuit Ĉ of Construction 6.4, by simulating the entire wire values of Ĉ. Sim obtains the
output y = C (x1, . . . , xn). It picks a random encoding of y for the output of Ĉ ′, and for every

1 ≤ i ≤ n it picks ẑ(i), ẑ(i)′ at random subject to
∏t
j=1 z

(i)
j =

∏t
j=1 z

(i)
j = id. Then, it honestly

computes the internal wires of the decoder that decodes the output of Ĉ ′, the wires in the decoding
of each ẑ(i), ẑ(i)′, and the wires of C̃.

Next, for every 1 ≤ i ≤ n, Sim chooses uniformly at random the values of the bundles encoding
xi, and the output of every randomization gadget (except for the gadgets following Ĉ ′’s output

gate, and the randomization gadgets used in Ĉ ′′ - the outputs of these gadgets have already been
determined during the simulation). Then, Sim computes the values on the internal wires and the
output wires of every NAND gadget and every Ginp gadget, by honestly evaluating the gadget. (This
is possible because the input to these gadgets is always the output of a randomization gadget, or an
input encoding, so the values of all the input wires to these gadgets have already been determined.)
This determines the inputs and outputs of all randomization gadgets. Finally, Sim uses the local
reconstructor of Gr (whose existence is guaranteed by [MV13, Lemma 2.1]) to simulate the internal
wires of Gr.

The remainder of the proof follows identically to [MV13, Theorem 1.4] (and is therefore omitted).
We only explain why the distinguishing advantage of our construction is larger. The real and
simulated distributions over the wire values are proven indistinguishable using a hybrid argument
that shows they are both indistinguishable from a hybrid distribution in which all wires, except the
internal wires of Gr gadgets, are distributed identically to the real wire values, and the internals of
rG are generated using the local reconstructor.

The indistinguishability of the real and hybrid distributions is proven by performing a hybrid
over the Gr gadgets, replacing the internals of one gadget at a time, and reducing indistinguishability
to the local reconstruction of Gr. Thus, if the reconstruction error of the local reconstructor of
Gr is ε, then the real and hybrid distributions are ε · |C|-close, since ĈMV contains at most |C|
randomization gadgets. For us, this becomes ε · (|C|+ 2n), since our input-checking gadgets use a
pair or randomization gadgets per input bit.

The indistinguishability of the hybrid and simulated distributions is proven by a hybrid over
the input bundles and the bundles at the output of Gr gadgets, replacing these bundles one at a
time, and reducing indistinguishability to the leakage-resilience of the encoding scheme. Thus, if
the underlying encoding scheme is ε-leakage resilient, then the simulated and hybrid distributions
are ε · |C|-close, since there are at most |C| such encodings. For us, this becomes ε · (|C|+ 2n),
since again our input-checking gadgets introduce two additional encodings per input bit.

29

7 Non-Adaptively Verifiable WI-PCPs of Proximity

In this section we describe our construction of WI-PCPs of Proximity (WI-PCPPs) that can be
non-adaptively verified. More specifically, we reduce the task of constructing such WI-PCPPs to
the task of designing a code with “good” distance that resists AC0 [⊕] leakage.

The high-level idea is to generalize the “LRCC-to-WI-PCP” transformation of [IWY16] to also
apply to PCPPs. As noted in Section 1.3, this turns out to be highly non-trivial, and requires over-
coming several obstacles. Recall that Ishai et a. [IWY16] construct WI-PCPs for an NP language
L with a corresponding NP relation RL by reducing L to the NP-complete language of circuit
satisfiability. Specifically, if C is the verification circuit of RL, then to prove a claim of the form
“x ∈ L” the prover and verifier operates a follows. First, they hard-wire x into C, obtaining a
circuit Cx, which is satisfiable if and only if x ∈ L. Then, they use a SAT-respecting (relaxed)

LRCC to obtain the leakage-resilient version Ĉx of x, and the prover then uses a standard PCP for
circuit satisfiability to prove that Ĉx is satisfiable. A successful proof implies, by the soundness of
the PCP, that with high probability Ĉx is indeed satisfiable, which by the SAT-respecting property
of the LRCC implies that Cx is satisfiable, i.e., that x ∈ L.

The first obstacle we face in generalizing this construction to work for PCPPs is that the PCPP
verifier does not know x, so we cannot hard-wire x into C. Thus, we have the compiled circuit take
as input (encodings of) both the input and witness. Recall from Section 1.3 that soundness then
requires that the verifier check consistency of the encoded input x̂ (used in Ĉ) with its own implicit
input x. More specifically, since [IWY16] encode bit-strings by encoding each bit separately, it
suffices to show how to check that b̂ encodes a given bit b, and we do so by providing the verifier
with an additional (non-ZK) PCPP proof that b̂ encodes b. Since an accepted proof only guarantees
that b̂ is close to an encoding of b, to rule-out the possibility that b̂ actually encodes 1−b the encoding
much have “good” distance.

An encoding scheme with good distance (in fact, with any non-trivial distance) is not onto,
meaning not all vectors of the “right” length are valid encodings. The SAT-respecting property of
the LRCC of [IWY16] crucially relies on the underlying encoding being onto. Therefore, we cannot
provide x to Ĉ in encoded form. This immediately implies that we cannot use the SAT-respecting
LRCC of [IWY16] “as-is”, since its leakage-resilience relied on the fact that its inputs were encoded.

Our first observation is that the SAT-respecting LRCC of [IWY16] has the following property.
It can take its inputs in two parts (x,w) where x is given in the clear, and w is encoded. (We
use the notation x,w here because in the final construction the input x will constitute the first,
un-encoded, part of the input; and the witness will be the second, encoded, part of the input.) In
this case, any leakage from L (where L is the leakage class which the original LRCC of [IWY16]
resists, e.g., AC0 [⊕] leakage) applied to the internal wires of the leakage-resilient circuit can be
simulated by a simulator that is given x and the output C (x,w). Indeed, the (inefficient) simulator
of [IWY16], given C (x,w), finds an input (x′, w′) such that C (x,w) = C (x′, w′), and uses it to
generate the entire wire values of the leakage-resilient version Ĉ. The simulator can use any input
(x′, w′) satisfying C (x,w) = C (x′, w′). In particular, given x, the simulator can find a w′′ such that
C (x,w) = C (x,w′′) (such a w′′ always exists) and use (x,w′′) in the simulation. This is formalized
in Lemma 7.16 below.

Thus, we can replace the circuit C with the circuit C ′ that takes as input an encoding Enc (x) of
x, and w, decodes x, and then emulates C (C ′ is described in Definition 7.18 below). Applying the

modified LRCC described above to C ′ gives a circuit Ĉ ′ such that leakage from L on the internals
of Ĉ ′ can be simulated given only Enc (x).

This modified construction is still insufficient to obtain a WI-PCPP since no security is guar-
anteed for the first part of the input which corresponds to the input x of the PCPP, whereas in

30

a ZK-PCPP most of x should remain private. We solve this issue in two steps. First, we use a
leakage-resilient encoding scheme Enc to encode the bits of x. This guarantees that leakage on
the inputs of C ′ reveals no information about the underlying input x. As noted above, this is the
“missing piece of the puzzle” which we currently do not know how to construct.

Second, we need the underlying LRCC to guarantee some sort of privacy even for the un-encoded
part of its input, roughly, that leakage on the internals of the circuit can be simulated given only
leakage (from a related leakage class) on its first input x. When using a leakage-resilient encoding
of x, this would guarantee x’s privacy. Of course, such a guarantee is impossible in general since the
circuit can perform arbitrary computations over its inputs which can “help” the leakage function.
(For example, if the leakage function simply probes few bits, but the circuit computes the XOR of
all bits of x, then by probing the outcome of this internal computation the leakage outputs a value
that cannot be simulated given any subset of bits of x, let alone few of them.) To resolve the issue
we resort to an “average-case” leakage-resilience property which is nonetheless sufficient for our
needs. Roughly, average-case L-leakage-resilience with relation to encoding scheme E = (Enc,Dec)
guarantees that as long as the first input of the circuit consists of random encodings, according to
E, of x’s bits, then leakage from L on the internals of the circuit (including its first input) can be
simulated given only its output and a small subset of input encodings, and the joint distribution of
the simulated leakage and this subset of input encodings is indistinguishable from the real-world
distribution. (See Definition 7.19 for the formal definition.) We note that this is sufficient since in
the WI-PCPP construction described below, the prover will provide random encodings of the bits
of x to Ĉ ′.

The final issue is that the WI-PCP of [IWY16] uses the PCP of Arora and Safra [AS92],
whereas to obtain a WI-PCPP we need a PCPP in a similar complexity class. We observe that the
construction described in [AS92] can in fact give a PCPP, if one encodes the input oracle as part
of the proof.

Given these observations and building blocks, the WI-PCPP is then obtained in the following
way. The prover and verifier both construct the leakage-resilient version Ĉ ′ of the circuit C ′

described above. Recall that Ĉ ′’s input is divided into two parts, one is given under some leakage-
resilient encoding with good distance, and the other is given under the (onto) encoding used by
the LRCC. The prover then generates random encodings of x,w (each bit xi is encoded separately

into an encoding Enc (xi)) and uses these encodings to generate the entire wire values W of Ĉ ′.

The prover then uses W to generate an AS-PCPP π for the claim “Ĉ ′ is satisfiable”. Notice that
this proof does not yet guarantee that the satisfying input is consistent with x. Next, for every
input bit xi of x, the prover generates a (standard, non-WI) PCPP π(i) for the claim “Enc (xi)
encodes xi”. The WI-PCPP consists of π, π(1), . . . , π(n), and the encodings Enc (x,) , . . . ,Enc (xn).
The verifier runs the AS-PCPP to verify π, then picks O (λ) (where λ is the security parameter)
random indices i ∈ [n], and for each of them uses π(i) to verify that Enc (xi) is a valid encoding of
the bit xi reported in its input oracle. The verifier accepts if all tests pass.

This intuition is formalized in the next sections, where we first establish needed notations and
definitions.

7.1 Notations and Definitions.

ZK- and WI-PCPs of Proximity. A ZK-PCP of Proximity (ZK-PCPP) is a generalization
of a ZK-PCP in which the verifier queries only few input bits. In particular, the verifier can only
check whether the input is “close” or “far” from a given language L. Thus, we first formalize
the notion of “closeness” which we use. Specifically, we measure distance in terms of the rela-
tive Hamming distance: for x, y ∈ {0, 1}n, the relative Hamming distance ∆ (x, y) is defined as

31

∆ (x, y) := |{i∈[n] : xi=yi}|
n . For a subset S ⊆ {0, 1}n, and a distance parameter δ ∈ (0, 1), we say

that x is δ-close to S if ∆ (x, y) ≤ δ for some y ∈ S, otherwise x is δ-far from S. For a language
L ⊆ {0, 1}∗, we say that x ∈ {0, 1}n is δ-close to L if x is δ-close to L∩{0, 1}n, otherwise x is δ-far
from L.

Definition 7.1 (ZK- and WI-PCPPs, [IW14]). A probabilistic proof system (P, V) is a Zero-
Knowledge Probabilistically Checkable Proof of Proximity (ZK-PCPP) system for an NP-relation
RL = RL (x,w), if the following holds.

• Syntax. The prover P has input ε, δ, 1q
∗
, x, w, and outputs a proof π for (x,w). The verifier

V has input ε, δ, q∗, |x|, and oracle access to x, π, and outputs either acc or rej.

We associate with P, V as above the same efficiency measures as in a ZK-PCP system (Defi-
nition 2.5), except that all measures also depend on δ.

• Semantics. (P, V) should have the following properties.

– Completeness. For every (x,w) ∈ R and every proof π ∈ P
(
ε, δ, 1q

∗
, x, w

)
,

Pr [V x,π (ε, δ, q∗, |x|) = acc] = 1, where the probability is over the randomness of V .

– Soundness. For every x which is δ-far from LR, and every π∗,
Pr
[
V π∗,x (ε, δ, q∗, |x|) = acc

]
≤ ε.

– (ε, q∗)-Zero-Knowledge (ZK). For every (possibly malicious) verifier V ∗ that reads at
most q∗ symbols from his input and proof oracles there exists a PPT simulator Sim such
that for every (x,w) ∈ RL, SD

(
(VV ∗,P (ε, δ, q∗, x, w) , qV) ,

(
Simx

(
ε, δ, 1q

∗
, |x|
)
, qS
))
≤ ε

where VV ∗,P (ε, δ, q∗, x, w) denotes the view of V ∗ when given oracle access to x, and a
proof π generated by P

(
ε, δ, 1q

∗
, x, w

)
, qV denotes the number of symbols V ∗ reads from

x, π, and qS denotes the number of bits Sim reads from x.

If the above holds with an inefficient simulator, we say the PCPP system is (ε, q∗)-
witness indistinguishable.

Notation 7.2. We use PCPP [r, q, ε, δ, `] to denote the class of NP-languages that admit an NP-
relation RL with a (non-ZK) PCPP in which the prover outputs proofs of length `, the verifier
tosses O (r) coins, queries O (q) proof bits, and rejects claims that are δ-far from the language with
probability at most ε.

Complexity of a PCP system. Roughly, the “complexity” of a PCP system is the complexity
required to generate a small portion of the proof. This notion is useful due to the connection
between zero-knowledge and leakage-resilience: the view of the verifier depends on few proof bits,
and so can be viewed as “leakage” on the witness.

Definition 7.3. Let L be a function family, q∗ ∈ N be a length parameter, and (P, V) be a PCP
(or PCPP) system for relation RL = RL (x,w). We say that (P, V) has complexity (L, q∗) if for
every (x,w) ∈ RL, every q∗ bits in every proof π ∈ P (x,w) can be generated by a function in L.

Representing computations as 3CNFs. Following [IWY16], we use boolean formulas to rep-
resent computations of boolean circuits. The description of the representation presented here is
taken verbatim from [IWY16].

Definition 7.4 (Canonical 3CNFs representing boolean circuits). A 3CNF is a conjunction of
clauses, where each clause contains exactly 3 literals (a literal is a variable or its negation). Given
a circuit C, we define the canonical 3CNF representing C, denoted ϕC , as follows.

32

• For every input gate gi of C we introduce a variable xi.

• For every gate g of C, with input wires a, b and output wire c:

– We introduce a variable xc. (Notice that if the gates are traversed from the input gates
to the output gate, then the variables xa, xb corresponding to a, b have already been
defined.)

– We define a 3CNF ϕg as follows:

∗ g is an ∧ gate, c = a ∧ b: ϕ (xa, xb, xc) = (xc ∨ ¬xa ∨ ¬xb) ∧ (¬xc ∨ xa ∨ ¬xc) ∧
(¬xc ∨ xb ∨ ¬xc).20

∗ g is an ∨ gate, c = a ∨ b: ϕ (xa, xb, xc) = (¬xc ∨ xa ∨ xb) ∧ (xc ∨ ¬xa ∨ xc) ∧
(xc ∨ ¬xb ∨ xc).

∗ g is a ¬ gate, c = ¬a: ϕ (xa, xc) = (¬xc ∨ ¬xa ∨ ¬xc) ∧ (xc ∨ xa ∨ xc).

• For the output gate go of C, with output wire o, we concatenate the clause (xo ∨ xo ∨ xo) to
ϕgo , i.e., we obtain a new 3CNF ϕgo ∧ (xo ∨ xo ∨ xo).

• ϕC = ∧gϕg, where the conjunction is over all gates except input gates.

Example 7.5. Let C : {0, 1}2 → {0, 1}, C (y, z) = (y ∧ z)∨ (¬y). Let g∧, g∨, g¬ denote the ∧,∨,¬
gates of C, and notice that g∨ is also the output gate. Then:

• The variables of ϕC are xy, xz (corresponding to the input gates of C), and x∧, x∨, x¬ (cor-
responding to the output wires of g∧, g∨, g¬, respectively).

• ϕg∧ (xy, xz, x∧) = (x∧ ∨ ¬xy ∨ ¬xz) ∧ (¬x∧ ∨ xy ∨ ¬x∧) ∧ (¬x∧ ∨ xz ∨ ¬x∧).

• ϕg¬ (xy, x¬) = (¬x¬ ∨ ¬xy ∨ ¬x¬) ∧ (x¬ ∨ xy ∨ x¬).

• ϕg∨ (x∧, x¬, x∨) = (¬x∨ ∨ x∧ ∨ x¬)∧(x∨ ∨ ¬x∧ ∨ x∨)∧(x∨ ∨ ¬x¬ ∨ x∨)∧(x∨ ∨ x∨ ∨ x∨) (the
last clause of ϕg∨ was inserted because g∨ is also the output gate).

• ϕC (xy, xz, x∧, x¬, x∨) = ϕg∧ ∧ ϕg¬ ∧ ϕg∨ .

Notice that the variables of ϕC correspond to the wires of C. ϕC represents C in the sense that
a wire assignment to C (which is also an assignment to the variables of ϕC) satisfies ϕC only if it
corresponds to the evaluation of C on a satisfying input, as stated in the next fact.

Fact 7.6. Let C be a boolean circuit, and let ϕC be the canonical 3CNF representing C (as in
Definition 7.4). Then a wire assignment W to C, which is also an assignment to the variables of
ϕC , satisfies ϕC if and only if W is the assignment to the wires of C when evaluated on a satisfying
input x. Moreover, ϕC can be constructed from C in linear time, so |ϕC | = O (|C|), where |ϕ|
denotes the number of clauses in ϕ.

20Notice that some variables appear twice in the same clause. This is not needed for the functionality of the
formula, but is required for ϕ to be a 3CNF. Instead, we could have introduced new variables, where a clause of
the form a ∨ b would have been replaced with the 3CNF (a ∨ b ∨ z) ∧ (a ∨ b ∨ ¬z), where z is a new variable. The
alternative transformation has the advantage that each variable appears at most once in every clause, but increases
the number of variables. As we will not require that every variable appears at most once in each clause, we have
chosen the first transformation, which has the advantage that a wire assignment to C is also an assignment to ϕC .

33

Circuit Classes. Recall that to construct ZK-PCPs and ZK-PCPPs, we are interested in pro-
tecting the prover computation from leakage that is computable in low depth. More formally, we
denote by Shallow (n,m, d, s) the class of all depth-d, size-s, arithmetic circuits over F with input
length n and output length m. We Denote Shallow (n, d, s) = ∪m∈NShallow (n,m, d, s). Somewhat
abusing notation, we use the same notations to denote the families of functions computable by
circuits in the respective class of circuits.

Leakage-Resilience of Encodings. We define the notion of leakage-resilience for encoding
schemes.

Definition 7.7 (Leakage-indistinguishability of functions and encodings, [IWY16]). Let D,D′ be
finite sets, LD = {` : D → D′} be a family of leakage functions, and ε > 0. We say that
two distributions X,Y over D are (LD, ε)-leakage-indistinguishable, if for any function ` ∈ LD,
SD (` (X) , ` (Y)) ≤ ε. In case LD consists of functions over a union of domains, we say that X,Y
over D are (LD, ε)-leakage-indistinguishable if SD (` (X) , ` (Y)) ≤ ε for every function ` ∈ L with
domain D.

Let L be a family of leakage functions. We say that a randomized function f : Σn → Σm is (L, ε)-
leakage-indistinguishable if for every x, y ∈ Σn, the distributions f (x) , f (y) are (L, ε)-leakage-
indistinguishable. We say that an encoding scheme E = (Enc,Dec) is (L, ε)-leakage-indistinguishable
if for every large enough t ∈ N , Enc

(
·, 1t
)

is (L, ε)-leakage indistinguishable.

Gadgets of an LRCC. The LRCCs described in the next sections will be gadget-based, and their
leakage-resilience will depend on the underlying gadgets satisfying two properties. First, the gadgets
are re-randomizing, namely the encodings at the output of each gadget are uniformly random
subject to encoding the “correct” value. Specifically, recall that a gadget takes both standard
inputs (encoded according to some encoding scheme E = (Enc,Dec)) and masking inputs, then
re-randomization holds when the masking inputs are chosen according to the “correct” distribution
for masking inputs of the gadget. Formally,

Definition 7.8 (Re-randomization, [FRR+10]). A gadget G is re-randomizing if for every standard
input x̂ = Enc (x), and every masking input m chosen according to the distribution of masking
inputs to G, G (x̂,m) is random subject to encoding the correct output (as determined by x, and
the operation which G emulates).

The second property is that the gadgets are locally reconstructible, i.e., given any encoding of
a “legal” input-output pair, the internal wires of the gadget (as determined by the encoding of the
inputs and outputs, and the masking inputs) can be simulated in a low complexity class. Formally,

Definition 7.9 (Local reconstructibility, [FRR+10]). Let G be a gadget. A pair (x̂, ŷ) of encodings
is plausible for G if for some well-formed masking input m, G on input (x̂,m) outputs ŷ. Given a
gadget G, ε > 0, and families L,LG of functions, G is (L, ε)-reconstructible by LG if the following
holds. There exists a distribution REC over functions rec that take as input the standard inputs
of G, and its output, and output simulated values for the masking inputs, and internal wires of G,
such that for every plausible pair (x̂, ŷ): supp (REC) ⊆ LG ; and if rec is chosen according to REC
then rec (x̂, ŷ) is (L, ε)-leakage-indistinguishable from the actual distribution of the wires of G (as
determined by the distribution of the masking inputs), conditioned on x̂, ŷ.

The leakage resilience of our constructions will rely on the fact that the gadgets of Faust
et al. [FRR+10] satisfy these properties. Specifically, [FRR+10] show that the gadgets are re-

34

randomizing because the outputs of the gadgets are masked with random and independent 0-
encodings. They also show (Lemma 9 in the full version of [FRR+10]) that the gadgets are locally
reconstructible in a low complexity class:

Lemma 7.10 (Gadgets are locally reconstructible, [FRR+10]). Let t ∈ N be a security parameter,
L,LE be families of functions, and ε (t) : N → R+. Let Ein denote the internal encoding scheme
used in the LRCC of [FRR+10] (see Section 2.2), and let n̂in1 denote the length of encodings which
it outputs when encoding a single field element. Then the following holds for the gadgets of the
LRCC.

• + and − gadgets are (L, 0)-reconstructible by Shallow
(
3n̂in1 , 2, O

(
n̂in1
))

.

• copy gadgets are (L, 0)-reconstructible by Shallow
(
3n̂in1 , 1, O

(
n̂in1
))

.

• mask gadgets are (L, 0)-reconstructible by Shallow
(
2n̂in1 , 1, O

(
n̂in1
))

.

• constα gadgets are (L, 0)-reconstructible by Shallow
(
n̂in1 , 1, O

(
n̂in1
))

.

• If Ein is (LE, ε (t))-leakage-indistinguishable, and LE = L ◦ Shallow
(
3n̂in1 , 3, O

(
n̂in1
))

, then the

× gadget is
(
L, n̂in1 · ε (t)

)
-reconstructible by Shallow

(
3n̂1, 2, O

((
n̂in1
)2))

.

Finally, we describe the copy gadget Gc of [FRR+10], because it is used in a non-black-box way
by the LRCC with public inputs of Section 7.2.

Construction 7.11 (Copy gadget Gc, Figure 3 in the full version of [FRR+10]). Let Ein =(
Encin,Decin

)
denote the internal encoding scheme used in the LRCC of [FRR+10]. The copy

gadget Gc takes as input â ∈ Encin
(
a, 1t

)
and masking inputs ~r, ~r′, and operates as follows.

1. Computes â′ = â+ ~r.

2. Computes â′′ = â+ ~r′.

3. Outputs (â′, â′′).

It is immediate from the construction that Gc ∈ Shallow
(
3n̂in (1, t) , 1, O

(
n̂in (1, t)

))
.

7.2 LRCCs with public inputs

We formalize the notion of an LRCC in which part of the input is given in the clear, and for which
no privacy is guaranteed. We start with the definition of a circuit compiler with public inputs.

Definition 7.12 (Circuit compiler with public inputs). A circuit compiler over F is a pair (Comp,E)
of algorithms with the following syntax.

• E = (Enc,Dec) is an encoding scheme with the same syntax as in Definition 2.1.

• Comp is a polynomial-time algorithm that given an arithmetic circuit C over F, and 1t,
outputs an arithmetic circuit Ĉ.

We require that (Comp,E) satisfy the following correctness requirement. There exists a negli-
gible function ε (t) = negl (t) such that for any arithmetic circuit C, and any inputs x,w for C, we

have Pr
[
Ĉ (x, ŵ) = C (x,w)

]
= 1, where ŵ ← Enc

(
w, 1t, 1|C|

)
.

A boolean circuit compiler with public inputs is defined similarly, except that it operates on
boolean circuits C.

35

Definition 7.13 (LRCC with public inputs). Let t be a security parameter, and F be a finite
field. For a function class L, ε (n) : N → R+, and a size function S (n,m) : N × N → N, we
say that (Comp,E) is (L, ε (t) ,S (n,m))-leakage-resilient with public inputs if there exists a PPT
algorithm Sim such that the following holds. For all sufficiently large t, every arithmetic circuit C

over F of input length n+m and size at most S (n,m), every ` ∈ L of input length
∣∣∣Ĉ∣∣∣, and every

x ∈ Fn, w ∈ Fm, we have SD
(
` [Sim (C,C (x,w) , x)] , `

[
Ĉ, x, ŵ

])
≤ ε (t), where ŵ ← E

(
w, 1|C|

)
.

If the above holds with an inefficient simulator Sim, then we say that (Comp,E) is
(L, ε (t) ,S (n,m))-relaxed leakage-resilient with public inputs.

We show how to modify the LRCC of [IWY15, Construction 3.7] to obtain a relaxed LRCC
with public inputs. The construction uses the LRCC in a non-black-box way. It also uses (as a
black-box) the copy gadget Gc and multiplication gadget G× of [FRR+10] to “refresh” encodings.
(Similar methods of “refreshing” encodings using a multiplication gadget were used before, e.g.,
in [ADF16].) Specifically, since G× is re-randomizing then one can refresh an encoding b̂ of a bit b
by first computing two copies b̂′, b̂′′ of b̂ using the copy gadget Gc, and then refreshing the encoding

by computing G×
(
b̂′, b̂′′

)
, where output encoding will be a random encoding of b. In the following,

we use r×, rc to denote the length of masking inputs used by G×,Gc (respectively).

Construction 7.14 (Relaxed LRCC with public inputs). Let F be a finite field,
t, tin ∈ N be security parameters, and n,m ∈ N be input length parameters. Let(
CompIWY,EIWY =

(
EncIWY,DecIWY

))
denote the LRCC of [IWY15, Construction 3.7]. We define

an LRCC with public inputs (Comp,E), as follows.

• E = (Enc,Dec), where Dec = DecIWY. As for Enc, recall that EIWY uses an internal encoding
scheme Ein =

(
Encin,Decin

)
, where EncIWY

(
x, 1t, 1tin

)
computes x̂b ← Encin

(
x, 1t, 0R(t,tin)

)
for b ∈ {0, 1} and some function R (t, tin), and outputs

(
x̂0, x̂1

)
. Let R′ (n, t, tin) = R (t, tin) +

n ·(r× + rc), then Enc
(
x, 1t, 1tin

)
= Encin

(
x, 1t, 0R

′(n,t,tin)
)

. (Intuitively, EncIWY concatenates

to its input sufficiently many 0-encodings to be used as masking inputs in the leakage-resilient
circuit. The n · (r× + rc) additional encodings are needed for the n copies of C inp introduced
in the construction of Ĉ below.) Let n̂in = n̂in (n, t, tin) and n̂ = n̂ (n, t, tin) denote the lengths
of encodings which Encin,Enc output, respectively.

• Comp on input a circuit C : Fn × Fm → F outputs the circuit Ĉ defined as follows:

– Ĉ interprets its input as x ∈ Fn, and an encoding ŵ ∈ Fn̂(m,t,tin).
– Define C inp : F × Fn̂in(r×+rc,t,tin) → F, which on input z ∈ F, and masking inputs
~r×, ~rc ∈ Fn̂in(r×+rc,t,tin):

∗ Concatenates z with 0n̂
in
1 −1, where n̂in1 = n̂in (1, t, tin), and let z′ denote this con-

catenation. (Intuitively, z′ is a valid, though not random, encoding of z according
to E.)

∗ Uses Gc with ~rc as the masking inputs, to compute two copies z̃, z̃′ of z′.

∗ Uses G× with ~r× as the masking inputs, to compute the multiplication z̃ × z̃′, and
let z′′ denote the output of the gadget. (Intuitively, this refreshes the encoding of
z.)

– For every 1 ≤ i ≤ n and b ∈ {0, 1}, let x̂i
b denote the output of Cinp

(
xi, ~r

b
i

)
, where ~rbi

is taken from the masking inputs given as input to Ĉ as part of the encoding of ŵ. Let

x̂b =
(
x̂1
b, . . . , x̂n

b
)

.

36

– Let C IWY denote the circuit CompIWY
(
C, 1t

)
obtained through the LRCC of Construction

3.7 in the full version of [IWY16]. Recall that C IWY emulates the execution of C twice in
parallel, on two copies of its inputs, and additionally checks the validity of the masking
inputs used in these executions. Ĉ emulates C IWY on inputs

(
x̂0, x̂1, ŵ

)
, where x̂b is used

as input to the b’th copy of C in C IWY. We stress that the masking inputs used in the
copies of Cinp are checked together with the other masking inputs in C IWY. (Specifically,
the masking inputs used to compute the x̂bi ’s are checked together with the masking
inputs of the b’th copy of C.)

Next, we prove that Construction 7.14 is SAT-respecting and relaxed LR.

Lemma 7.15. Construction 7.14 is SAT-respecting.

Proof sketch for Lemma 7.15. Ishai et al. [IWY16] prove that C IWY is SAT-respecting. Moreover,
their proof shows that if C IWY is satisfied then at least one of the copies of C uses only well-formed
masking inputs (i.e., encodings of 0). Since the masking inputs used in C inp are checked as part
of C IWY, it follows that for at least one b ∈ {0, 1}, x̂b was generated using well-formed masking
inputs, i.e., for every 1 ≤ i ≤ n, x̂i

b encodes x2i . Moreover, C IWY checks that its input symbols are
bits, so x ∈ {0, 1}n, and in particular x2i = xi for every 1 ≤ i ≤ n. Therefore, C IWY emulates C on

(x,w), so Ĉ is satisfiable only if C is.

Lemma 7.16. Let L be a leakage class, and ε (t) , ε× (t) : N → R+. If the LRCC of Construction
3.7 in the full version of [IWY16] is (L, ε (t))-(relaxed) leakage-resilient, and the multiplication
gadget G× of [FRR+10] is (L, ε× (t))-leakage-resilient, then Construction 7.14 is (L′, ε′ (t))-(relaxed)
leakage-resilient, where L′ = L ◦ Shallow

(
6n · n̂ (1, t, tin) , 3, O

(
n · n̂2 (1, t, tin)

))
and ε′ (t) = ε (t) +

4nε× (t).

The proof uses the following observation regarding the simulator SimIWY of [IWY16]. For any
satisfying input (x,w) for C, If SimIWY is given an honestly-generate encoding of x̂ then it can
successfully simulate the wire values of C IWY consistently with x̂ (i.e., x̂ is the encoded input used
in the simulated wires). Similarly, it can successfully simulate the wire values even when some of
the masking inputs are fixed to random 0-encodings.

Proof sketch for Lemma 7.16. We prove the claim by reduction to the leakage-resilience of Con-
struction 3.7 in the full version of [IWY16]. We describe a simulator Sim that uses the simulator
SimIWY of [IWY16] in a non-black-box manner. Sim on input x and C (x,w) honestly emulates the
copies of C inp, with well-formed masking inputs, to generate the input encoding x̂ for C IWY. It
then uses SimIWY to simulate the entire wire values of C IWY consistently with x̂ and the masking
inputs used in the copies of C inp.

We show that the simulated leakage is ε′ (t)-statistically close to the real-world leakage. We use
the fact, proven in [FRR+10] (and cited in Lemma 7.10) that the multiplication gadget G× is locally

reconstructible in Shallow
(

3 · n̂in (1, t, tin) , 2, O
((
n̂in (1, t, tin)

)2))
, and that the copy gadget Gc is

in Shallow
(
3 · n̂in (1, t, tin) , 1, O

(
n̂in (1, t, tin)

))
.

Let WS ,WR denote the wire values in the simulation described above, and in the real-world
execution, respectively. We show that for any `′ ∈ L′, SD (`′ (WS) , `′ (WR)) ≤ ε′ (t). We define a
pair of hybrid distributions, HS ,HR which are obtained from WS ,WR (respectively) by replacing
the internal wire values of the G× gadgets in the copies of Cinp with the simulated wire values
generated by the local reconstructor of G×. Let ` denote the leakage function that has x hard-wired
into it, and given the wire values W of C IWY, honestly computes the copy gadgets Gc on the bits

37

of x, then uses the obtained values, together with the encodings of x reported in W, to generate
the wire values of all copies of Cinp (using the local reconstructor of G×). Then ` ∈ L (because
there are 2n such gadgets, which can be evaluated in parallel), and by a standard hybrid argument
over the local reconstruction property of G×, SD (`′ (WR) , `′ (HR)) , SD (`′ (WS) , `′ (HS)) ≤ 2n · ε×.
(More formally, this follows from a standard hybrid argument where we replace the internal wires
of one of the 2n G× gadgets at a time.)

It remains to bound SD (`′ (HR) , `′ (HS)). Notice that the internals of all the Cinp circuits are
identically distributed in HR,HS , so it suffices to bound the statistical distance conditioned on
some fixed value v of these wires. Let ` be the leakage function that has v hard-wired into it,
and that, given the wire values W of C IWY, runs `′ on (v,W). Then ` ∈ L. Let W ′R,W ′S denote
the restriction of WR,WS to the wires of C IWY, i.e., W ′R are the wire values of C IWY in an actual
execution, whereasW ′S were generated by SimIWY. Therefore, by the leakage-resilience of the LRCC
of [IWY16], SD (` (H′S) , ` (H′R)) ≤ ε (t). We conclude the proof by noting that ` (H′?) = `′ (H?) for
? ∈ {S,R}.

Remark 7.17 (Efficient simulation). We note that if the simulator SimIWY of the LRCC of Con-
struction 3.7 in the full version of [IWY16] is given a witness w such that (x,w) ∈ RL then the
simulation is efficient. This is implicit in [IWY16], since SimIWY can use any satisfying witness for
the simulation, and finding such a satisfying witness is the only computation SimIWY performs that
is not polynomial-time. Consequently, if the simulator Sim described in the proof of Lemma 7.16
is given a satisfying witness w, it can pass it along to SimIWY, and overall the simulation would be
efficient.

7.3 Average-Case LRCCs

Next, we use LRCCs with public inputs to construct an average-case LRCC. We first define the
class of circuits for which we will guarantee average-case leakage-resilience.

Definition 7.18. Let F be a finite field, and let C : Fn × Fm → F be an arithmetic circuit over F.
Let Einp = (Encinp,Decinp) be an encoding scheme that outputs encodings of length n̂ (n, t, tin), in
which the decoder can be implemented by a circuit CDec. The circuit C ′ : Fn·n̂(1,t,tin) × Fm → F is
defined as follows:

1. C ′ interprets its input as n encodings x1, · · · ,xn according to Einp of x1, . . . , xn ∈ {0, 1}, and
a witness w.

2. For every 1 ≤ i ≤ n, C ′ uses CDec to decode xi and obtain a bit xi. Let bi ∈ F be indicator
of the event that decoding succeeded, i.e. bi = 0 if and only if the decoding failed.

3. if
∏n
i=1 bi = 0 then C ′ outputs 0. Otherwise, C ′ outputs C ((x1, · · · , xn) , w).

Intuitively, C ′ emulates the operation of C, when the input x is encoded using Einp. If not all
input encodings are valid, namely, the encoded inputs of C ′ do not correspond to a valid input for
C, then C ′ outputs 0. Otherwise, C ′ emulates C on the corresponding input.

Let Einp = (Encinp,Decinp) be an encoding scheme, and C be a circuit taking inputs (x,w).
Informally, C is average-case leakage-resilient with respect to Einp if for every inputs x,w, and
every subset I ⊆ [n] of bits of x, the joint distribution of {xi}i∈I , and the leakage on the wire
values C [x, w] when x = (x1, . . . ,xn) is a random encoding of x = (x1, . . . , xn) accordingly to Einp,
can be simulated given only I, {xi}i∈I , and C ′’s output. Formally:

38

Definition 7.19 (average-case leakage-resilience). Let t be a security parameter, let F be a finite
field, and let Einp = (Encinp,Decinp) be an encoding scheme. For a function class L, ε (n) : N→ R+,
and a size function S (n,m) : N×N→ N, we say that a circuit compiler with public inputs (Comp,E)
is (L, ε (t) ,S (n,m))-average leakage-resilient with respect to Einp if there exists a PPT algorithm
Sim such that the following holds. For all sufficiently large t, every arithmetic circuit C over F of

input length n+m and size at most S (n,m), every ` ∈ L of input length
∣∣∣Ĉ ′∣∣∣, every subset I ⊆ [n],

and every x ∈ Fn, w ∈ Fm, we have

SD
((
`
[
Sim

(
C,C (x,w) ,

{
x′i
}
i∈I

)]
,
{
x′i
}
i∈I

)
,
(
`
[
Ĉ ′,x, ŵ

]
, {xi}i∈I

))
≤ ε (t)

where C ′ is the circuit defined in Definition 7.18, ŵ ← E
(
w, 1t, 1|C

′|
)

, x = (x1, . . . ,xn), x′ =

(x′1, . . . ,x
′
n), and xi,x

′
i ← Encinp

(
xi, 1

t
)

for every 1 ≤ i ≤ n.
If the above holds with an inefficient simulator Sim, then we say that (Comp,E) is

(L, ε (t) , S (n,m))-relaxed average-case leakage-resilient with respect to Einp.

Next, we show that the relaxed LRCC with public inputs of Construction 7.14 is relaxed average-
case leakage-resilient with respect to a leakage-resilient encoding scheme.

Lemma 7.20. Let L be a leakage class, S (n,m) be a size function, and ε (t) , ε′ (t) , ε× (t) :
N → R+. If Construction 7.14 is (L,S (n,m) , ε (t))-relaxed leakage-resilient with an (L, ε′ (t))-
leakage-indistinguishable encoding scheme E, the gadgets of [FRR+10] are re-randomizing and
(L, ε× (t))-reconstructible by Shallow

(
O (n̂ (1, t, tin)) , 2, O

(
n̂2 (1, t, tin)

))
, and Einp is (L, ε′ (t))-

leakage-indistinguishable, then for every circuit C of size s ≤ S (n,m) − n · |CDec| −
n, Construction 7.14 is (L′, ε′′ (t))-relaxed average-case leakage-resilient, where L = L′ ◦
Shallow

(
O (s · n̂ (1, t, tin)) , 3, O

(
s · n̂2 (1, t, tin)

))
, and ε′′ (t) = 2 (2n+ s) · ε× + 6n · ε′ (t) + ε (t).

Proof sketch of Lemma 7.20. Let Sim′ denote the simulator for the LRCC of Construction 7.14,
and we describe a simulator Sim for average-case leakage-resilience. Sim is given C (x,w) and
{x′i}i∈I . For every i ∈ I, it decodes x′i to recover the encoded bit xi. It finds (x′, w′) such that
C (x,w) = C (x′, w′), and {xi}i∈I = {x′i}i∈I . Then, for every 1 ≤ i ≤ n, i /∈ I, it computes
x′i ← Encinp

(
x′i, 1

t
)
, and runs Sim′ on input x′ = (x′1, . . . ,x

′
n) and C (x,w) to simulate the entire

wire values of Ĉ ′ consistently with x′ (honestly generating the decoder wires in C ′).
Let WS ,WR denote the wire values in the simulation described above, and in the real-world

execution, respectively. We show that for any `′ ∈ L′, SD
((
`′ (WS) , {x′i}i∈I

)
,
(
`′ (WR) , {xi}i∈I

))
≤

ε′′ (t). Since {x′i}i∈I and {xi}i∈I are identically distributed, it suffices to bound the statistical
distance conditioned on an arbitrary choice of these values, in which case it suffices to bound
SD (`′ (WS) , `′ (WR)). We do so through a sequence of hybrids.

Let `′ ∈ L′ be a leakage function. We say that a gadget G of Ĉ ′ touches Cinp if (at least
one of) its input(s) is the output of a G× gadget in one of the Cinp copies of Construction 7.14.
Notice that there are s′ ≤ |C| such gadgets. Let HR be the distribution obtained from WR by
replacing the internal wire values of the G× gadgets in the copies of Cinp, and all gadgets that touch
Cinp, with the simulated wire values generated by the gadget local reconstructors. We show that
SD (` (WR) , ` (HR)) ≤ (2n+ |C|) ε× (t).

Towards that end, fix some arbitrary order on these s′′ := 2n+ s′ gadgets, and define HiR which
is obtained from WR by replacing the internals of the first i gadgets with the locally reconstructed
wires, i.e., H0

R = WR and Hs′′R = HR. We show that SD
(
`′
(
Hi+1
R

)
, `′
(
HiR
))
≤ ε× (t) for every

0 ≤ i < s′′. Let ` be the function that has all wires of Ĉ ′, except the internals of the i+1’th gadget,
hard-wired into it. It is given as input the wire values of the i + 1’th gadget, uses the hard-wired

39

values to generate the entire wire values of Ĉ ′, and runs `′ on these wire values. Then ` ∈ L, and
so by the local-reconstruction property SD

(
`′
(
Hi+1
R

)
, `′
(
HiR
))
≤ ε× (t).

Next, defineH′R which is obtained fromHR by first replacing the encodings at the outputs of the
G× gadgets of Cinp with random encodings (of random values), and then generating the internal wire
values of these gadgets, as well as all the gadgets that touch Cinp, using their local reconstructors.
We show that SD (` (HR) , ` (H′R)) ≤ 2nε′ (t) follows from the leakage-indistinguishability of E.
Indeed, fix some arbitrary order on the 2n encodings at the output of the G× gadgets of Cinp,
and define Hi′R which is obtained from HR by replacing the first i encodings, i.e., H0′

R = HR and
H2n′
R = H′R. We show that SD

(
`′
(
Hi+1′
R

)
, `′
(
Hi′R
))
≤ ε′ (t) for every 0 ≤ i < 2n. Let ` be

the function that has all wires of Ĉ ′, except the i + 1’th encoding and the internal wires of all
gadgets that touch it (i.e., the G× gadget of Cinp which outputs it, and the at most s gadgets
that touch Cinp which take the i + 1’th encoding as input), hard-wired into it. It is given as
input the i+ 1’th encoding, and uses the gadget local reconstructors to generate the internal wire
values of these gadgets. Then, it concatenates these values to the hard-wired values, and applies
`′. Then ` ∈ L (here, we also use the fact that n ≤ s), and by the leakage-indistinguishability of E,
SD
(
`′
(
Hi+1′
R

)
, `′
(
Hi′R
))
≤ ε′ (t).

Let H′′R be the distribution obtained from H′R by replacing the input encodings x of x to
encodings x′ of x′, then generating the internal wire values of the copy gadgets Gc of Cinp by
honestly evaluating the gadgets, and generating the internal wires of the multiplication gadgets G×
of Cinp using the local reconstructor. (More accurately, we only replace the gadgets whose inputs
are encoding of the i’th input bit for some i /∈ I.) Let k := n−|I|. For 1 ≤ i ≤ k, letHi′′R be obtained
from H′R by replacing the first i input bits of x for i /∈ I with the corresponding bits of x′. We
show that SD

(
`′
(
Hi+1′′
R

)
, `′
(
Hi′′R

))
≤ ε′ (t) by the leakage-indistinguishability of Einp. Indeed, let `

be the leakage function that has all wires of Ĉ ′, except the internal wires of the Gc and G× gadgets
that takes the i+1’th input bit as input. ` is given as input an encoding b of either xi+1 or x′i+1, it
honestly emulates Gc to generate its internal and output wires, and uses the local reconstructor of
the G× gadget to generate the internal wires of the gadget. Then, it concatenates these wire values
to the hard-wired values, and applies `′. Then ` ∈ L and so SD

(
`′
(
Hi+1′′
R

)
, `′ (HRi′′)

)
≤ ε′ (t), so

SD (`′ (H′′R) , `′ (HR′)) ≤ kε′ (t) ≤ n · ε′ (t).
Finally, letW ′R denote the distribution over the wire values in a real-world execution with input

x′. Notice that H′′R is obtained fromW ′R by replacing the encodings at the output of the G× gadgets
with random encodings, and then generating the internal wires of these gadgets, and all gadgets
that touch Cinp, with their local reconstructors. Therefore, the same arguments above show that
SD (`′ (W ′R) , `′ (H)) ≤ (2n+ s) · ε× (t) + 3n · ε′ (t). We conclude the proof by noting that by the
leakage-resilience with public inputs of Construction 7.14, SD (`′ (W ′R) , `′ (WS)) ≤ ε (t).

Remark 7.21 (Efficient simulation). Notice that except for finding (x′, w′) ∈ RL which are consis-
tent with (x,w), the simulator Sim described in the proof of Lemma 7.20 is efficient, if the simulator
Sim′ of the LRCC with public inputs is efficient. Using Remark 7.17, Sim′ is efficient when given
w′. Consequently, when given w′, Sim is PPT.

7.4 A PCPP for 3SAT based on [AS92]

We now describe how to modify the AS-PCP [AS92] to get a PCPP. The AS-PCP proves satisfi-
ability of a given 3-CNF, and one ingredient of the proof is an error-correcting encoding (the so
called “low degree extension”) of the witness, i.e., the satisfying assignment. Part of the verification
procedure verifies the purported encoding is indeed close to some valid encoding. In the PCPP
setting, we think of the input x and the witness w as two parts of a satisfying assignment for the

40

3CNF. Thus, we can include the error-correcting encoding of x in the proof (instead of hard-wiring
it into the 3CNF as in the PCP setting).

What does including an encoding of x in the proof give us? Recall that soundness only guar-
antees that if the verifier accepts then x is δ-close to L. The PCPP can be used to verify that
the purported encoding of x is δ/2-close to a valid encoding. The other ingredients of the PCPP
(specifically, the sum-check part) then verify that the closest encoding to the purported encoding
of x is δ/2-close to a satisfying assignment to the 3CNF. Thus, if x is δ-far from L then at least one
of these tests will fail with high probability, and the verifier will reject. Specifically, using [AS98,
Theorem 2], we have the following (using Notation 7.2):

Theorem 7.22 (PCPPs for 3SAT, implicit in [AS92]). For any δ ∈ (0, 1),

3SAT ∈ PCPP

[
log n, log2 n · log

1

δ
,
1

2
, δ,poly (n)

]
.

7.5 The WI-PCPP System

We now describe the transformation from a(relaxed) average-case LRCC to a WI-PCPP system.
We will need the following notation.

Notation 7.23 (LE). Let E = (Enc,Dec) be a parameterized encoding scheme, and b ∈ {0, 1}. We
use LbE to denote all encodings of b according to E. That is: LbE = ∪t∈NSupp

(
Enc

(
b, 1t

))
.

Construction 7.24. Let t ∈ N be a security parameter, and let RL = RL (x,w) be an NP-relation
with verification circuit C.21 (More precisely, C is a family {Cn} of circuits, where Cn is applied
to inputs x of length n. To simplify notations, we denote all circuits in the family by C.) The
Wi-PCPP system (P, V) uses the following building blocks.

• A PCPP system (Pin, Vin) for 3SAT with complexity (L, q∗) and a non-adaptive verifier V .

• A SAT-respecting L-average-case (relaxed) LRCC
(
Comp,E′ =

(
Enc′,Dec′

))
.

• An L-leakage-resilient encoding scheme E = (Enc,Dec) with relative distance δ, in which the
decoder Dec can be implemented by a circuit CDec.

• For b ∈ {0, 1}, a PCPP system
(
P bE, V

b
E

)
for the language LbE of Notation 7.23, where V b

E is
non-adaptive.

Prover algorithm. On input (x,w) ∈ RL where n = |x|, and 1t,22 P :

1. Uses C to construct the circuit C ′ of size s := |C ′| defined in Definition 7.18.

2. Computes Ĉ (·) = Comp (C ′).

3. For every 1 ≤ i ≤ n, P samples a random encoding xi ← Enc
(
xi, 1

t
)

of xi, and let x =
(x1, · · · ,xn).

21We note that since C takes the witness w as input, its description reveals |w|. To avoid this, we can use the
(polynomial) bound p on the witness length which RL is guaranteed to have. Specifically, C will take inputs of length
n + p + log p, where the first n bits are the input, the following p bits are the witness padded to length p, and the
last log p bits are the witness length in binary representation padded to length log p.

22Formally, P take as input ε, 1q∗ , and not 1t. However, these are used to determine which t to use for the
underlying LRCC and encoding scheme E, so for simplicity we choose to describe the construction using t.

41

4. Samples a random encoding ŵ ← Enc′
(
w, 1t, 1s

)
of the witness.

5. Evaluates Ĉ on input (x, ŵ), and let W denote the wire values of Ĉ in this evaluation.

6. Construct the canonical 3CNF ϕ representing Ĉ.

7. Runs Pin on input ϕ, and witness W, to generate a proof πC for the claim “ϕ ∈ 3SAT”.

8. For every 1 ≤ i ≤ n, Runs P xiE to generate a PCPP πi for the claim “xi ∈ LxiE ”.

9. Outputs the proof π = πC ◦ π1 ◦ · · · ◦ πn ◦ x1 ◦ · · · ◦ xn.

Verifier algorithm. On input 1t, 1n (where n = |x|), and given oracle access to input oracle
x, and proof π = πC ◦ π1 ◦ · · · ◦ πn ◦ x1 ◦ · · · ◦ xn, the verifier V :

1. Constructs the leakage-resilient circuit Ĉ = Comp (C ′), and its canonical 3CNF ϕ. (Here, C ′

denotes the circuit defined in Definition 7.18.)

2. (Verifying that Ĉ is satisfiable.) Runs Vin with input ϕ, implicit input x1 ◦ . . .◦xn, and proof
πC . If Vin rejects then V rejects.

3. (Verifying consistency of Ĉ’s input with x.) Repeats the following t independent times: picks
a random i ∈R [n], reads xi from its input oracle, and runs V xi

E with input oracle xi, and
proof oracle πi. If V xi

E rejects, then V rejects. If all t iterations succeeded, V accepts.

Next, we analyze the properties of Construction 7.24. Perfect completeness follows directly
from the perfect completeness of the encodings schemes E,E′, the perfect completeness of the
LRCC (Comp,E′), and the perfect completeness of the three underlying PCPP systems.

Informally, soundness follows from the SAT-respecting property of (Comp,E), and from the
soundness of the underlying PCPP systems. This is formalized in the following lemma.

Lemma 7.25. Let ε, ε′ ∈ (0, 1) be error parameters, and δ′ ∈ (0, 1) be a proximity parameter.
Let n̂ (n, t) , n̂′ (n, t) denote the length of encodings output by the encoding schemes E,E′ used in
Construction 7.24, respectively. If:

• E has relative distance δ,

•
(
P bE, V

b
E

)
(for b ∈ {0, 1}) has soundness error ε with proximity parameter δ, and

• (Pin, Vin) has soundness error εin with proximity parameter δin = min
{

δ′

4n̂(1,t) ,
δδ′

4

}
,

then Construction 7.24 has soundness error max

{
εin,
((

1− δ′

4

)
+ δ′

4 · ε
)t}

with proximity param-

eter δ′.

Proof. Let x be δ′-far from LRL
, and denote n = |x|. Denote n̂′1 = n̂′1 (t) = n̂′ (1, t) and n̂1 =

n̂1 (t) = n̂ (1, t). Let π∗ = πC,∗ ◦π1,∗ · · · ◦πn,∗ ◦x∗1 ◦ · · · ◦x∗n denote the (possibly ill-formed) “proof”.

Consider the following mental experiment, in which instead of generating Ĉ from C ′, P generates
Ĉ from C ′x∗ = C ′ (x∗, ·) (namely, C ′ with x∗ hard-wired into it). To distinguish it from the actual
leakage-resilient circuit generated by P in the real world, we use Ĉ ′ to denote the leakage-resilient
circuit generated in the mental experiment. Notice that for any (possibly ill-formed) encoding ŵ∗,[
Ĉ ′, ŵ∗

]
and

[
Ĉ, (x∗, ŵ∗)

]
are identically distributed. In particular, the SAT-respecting property

of (Comp,E′) guarantees that Ĉ ′ is satisfiable if and only if C ′ (x∗, ·) is satisfiable.

42

Let E1 denote the event that for at least a δ′

4 -fraction of the i’s, x∗i is not a valid encoding
(according to E) of some x∗i . Let E2 denote the event that E1 does not occur, and additionally
x∗ = (x∗1, · · · , x∗n) is δ

2 -close to x, where for every i such that x∗i is not a valid encoding according
to E, we set x∗i = xi. We consider three possible cases.

First, if E1 occurs, then there exists a set |I| ⊆ [n] of size I ≥ δ′

4 n such that for every i ∈ I, x∗i is
not a valid encoding according to E, i.e., bi = 0 (where bi is the field element computed in Step 2 of
the circuit C ′ of Definition 7.18), and so C ′x∗ is not satisfiable. Moreover, to satisfy C ′x∗ , one needs
to change at least δ′

4 n bits of x∗ (at least one bit of x∗i , for every i ∈ I). As noted above, this implies

that Ĉ ′ is not satisfiable, and moreover to make it satisfiable, one needs to change at least δ′

4 n bits

of the hard-wired inputs to Ĉ ′. Since |x∗| = n · n̂1, this implies that (ϕ,x∗) is δ′n
4n·n̂1

= δ′

4n̂1
-far from

3SAT. Therefore, the soundness of (Pin, Vin) guarantees that Vin (and consequently also V) rejects
except with probability εin.

Second, if E2 occurs, then for at least
(

1− δ′

4

)
n of the i ∈ [n], x∗i is a valid encoding (according

to E) of some xi (recall that for all invalid encodings, the corresponding bit is set to be consistent
with x), and in addition x∗ = (x∗1, · · · , x∗n) is δ′

2 -close to x. Therefore, x∗ is δ′

2 -far from LRL
, i.e.,

to obtain an x′ ∈ LRL
, one needs to change at least δ′n

2 bits of x∗. Moreover, since at most δ′n
4

x∗i are not valid encodings (according to E′), then to obtain an encoding x′ = (x′1, · · · ,x′n) of some
x′ ∈ LRL

, one needs to change at least δ′n
4 encodings x∗i from a valid encoding of x∗i to a valid

encoding of x̄∗i which (by the δ relative distance of E) requires changing at least δn̂1 bits of the

encodings. The same arguments used in the first case now imply that (ϕ,x∗) is δ′n·δ′·n̂1/4
n·n̂1

= δδ′

4 -far
from 3SAT, and again by the soundness of (Pin, Vin), V rejects except with probability εin.

Finally, if both E1, E2 do not occur, then at most δ′n
4 of the x∗i ’s are not valid encodings (according

to E), and additionally, x∗ = (x∗1, · · · , x∗n) is δ′

2 -far from x (recall that for every i such that x∗i is

not a valid encoding according to E, x∗i is set to xi). In particular, at least δ′n
4 of the x∗i are valid

encodings (according to E) of x̄i. Consequently, for each of the t iterations that V performs in
Step 3, with probability at least δ′

4 the index i chosen for the iteration is such that x∗i is a valid
encoding (according to E) of x∗i = x̄i. Moreover, since E has relative distance δ, then x∗i is δ-far from
LxiE . Therefore, the soundness of the PCPP system

(
P xiE , V xi

E

)
guarantees that this iteration fails,

except with probability ε. Overall, a random iteration in Step 3 of V ’s algorithm succeeds with

probability at most ε′′ =
(

1− δ′

4

)
+ δ′

4 · ε. Since V performs t random and independent iterations,

the probability that all of them succeeds (which upper bounds the probability that V accepts) is
at most (ε′′)t.

Next, we analyze the zero-knowledge property of the construction. We first describe the simula-
tor algorithm which will be used to prove zero-knowledge against non-adaptive (possibly malicious,
possibly unbounded) verifiers. Notice that since the verifier is non-adaptive, its entire view can be
generated given only the input, its randomness, and the oracle answers to its queries. Therefore,
it suffices for the simulator to generate these values.

Construction 7.26 (Simulator for Construction 7.24, non-adaptive V ∗). Let Simin denote the
simulator for the (relaxed) LRCC (Comp,E). The simulator Sim for Construction 7.24 operates
as follows. On input 1t, 1q

∗
, and given oracle access to x and a (possibly malicious, possibly

unbounded) non-adaptive verifier V ∗, Sim:

1. Picks a random string r for V ∗, and calls V ∗ with randomness r to obtain its queries Q to
the input oracle x and the proof. Let Qx,QC ,Q1, · · · ,Qn ⊆ Q denote the subsets of queries
from Q to bits of x, πC , and π1 ◦ x1, · · · , πn ◦ xn, respectively.

43

2. For every i ∈ Qx, queries its oracle on xi, and uses the oracle answers to generate the answer
Ax to the queries in Qx.

3. Constructs the circuit Ĉ = Comp (C ′) (where C ′ is the circuit from Definition 7.18), and the
canonical 3CNF ϕ representing Ĉ.

4. Let I = {i : Qi 6= ∅}. Then for every i ∈ I, Sim:

• Queries its oracle x on i.

• Samples a random encodings x′i ← Enc
(
xi, 1

t
)
.

• Emulates P xiE with input x′i to generate a proof πi′ for the claim “x′i ∈ L
xi
E ”.

• Uses xi,x
′
i, π

i,′ to generate the answers Ai to the queries in Qi.

5. Runs Simin with input {x′i}i∈I , 1 (1 is the output of the circuit C) to obtain a simulated wire

assignment W ′ to the wires of Ĉ, which is consistent with {x′i}i∈I .

6. Runs Pin on input ϕ, and witness W ′, to generate a proof πC′, and uses πC′ to generate the
answers AC to the queries in QC .

Remark 7.27. We note that the only operation that Sim performs which might require super-
polynomial time is the emulation of Simin.

Next, we use the simulator of Construction 7.26 to prove that Construction 7.24 is q∗-witness-
indistinguishable against non-adaptive (malicious) verifiers.

Lemma 7.28. Let n ∈ N denote an input length parameter. Let RL = RL (x,w) be an NP-relation
with verification circuit C of size S (n), and q∗ ∈ N be a zero-knowledge parameter. If:

• E = (Enc,Dec) is an encoding scheme in which Dec can be implemented by a circuit CDec of
size s,

• (Pin, Vin) has complexity (L, q∗), and

• (Comp,E′ = (Enc,Dec)) is an (L, ε, S (n) + n (s+ 2))-relaxed average-case LRCC with respect
to E,

then Construction 7.24 has (q∗, 3ε)-witness-indistinguishability against non-adaptive verifiers.

Proof. We show the lemma holds with the simulator Sim of Construction 7.26. Let V ∗ be a (possibly
malicious, possibly unbounded) non-adaptive verifier that makes at most q∗ queries to its oracles,
and let x ∈ LRL

. Let Real denote the restriction of V ∗’s view to x, V ∗’s randomness, and the
oracle answers to V ∗’s queries in the real world execution. Let Ideal denote the output of Sim
on input 1t, 1q

∗
, and given oracle access to x and to V ∗. First, notice that V ∗’s randomness is

identically distributed in both Real, Ideal, and so it suffices to bound the statistical distance when
both distributions are conditioned on every possible randomness r. Notice that this conditioning
also determines the queries Qx,Qc,Q1, . . . ,Qn of V ∗ to its input and proof oracles. We show
that under this conditioning, both distributions are close to the hybrid distribution H obtained
through the mental experiment in which P is run with input x′ ∈ LRL

, and a witness w′ such
that (x′, w′) ∈ LRL

instead of (x,w), where x′ is such that the emulation of Simin in Step 5 of
Construction 7.26 used encodings according to E of x′. Let Qx,QC ,Q1, · · · ,Qn, I be as defined in
Construction 7.26.

44

SD (Real,H) ≤ 2ε. The only difference between Real,H is that in Real the prover uses (x,w),
whereas in H the prover uses (x′, w′). Notice that for every i ∈ I, xi = x′i and so the distributions
induced by πi,xi are identical in Real,H. Moreover, for every i /∈ I, the bits of πi do not appear in
Real,H, and so these are of no interest. Therefore, we can condition Real,H on the event that both
use the same encodings xi, and the same proofs πi, for all i ∈ I. In this case, the only difference
between Real,H is in the proof πC , and the encodings xi for i /∈ I. LetW denote the wire values of
Ĉ in the real world, and WH denote the wire values in the hybrid H. Notice that W,WH contain
x1, . . . ,xn, and therefore any q∗ bits of x1, . . . ,xn can be generated by probing q∗ bits of W,WH.
Moreover, every q∗ bits of πC can be generated by a function in L. Therefore, the answers to all
the verifier queries to πC can be answered by applying a function from L to W (in Real) or WH
(in H). The L-average-case relaxed leakage-resilience of (Comp,E) guarantees that in both cases
the answers are ε-statistically close to the output of the leakage function on the simulated wire
values that the simulator Simin of the LRCC would have generated. Using the triangle inequality,
SD (Real,H) ≤ 2ε.

SD (H, Ideal) ≤ ε. The only different between Ideal,H is that in Ideal the wires W ′ of Ĉ
(including the encodings xi for i /∈ I) were generated by the simulator Simin of the LRCC, whereas
in H the wire value WH were obtained by evaluating Ĉ on encodings generated by the prover.
Notice that for every i ∈ I, the encoding xi contained in W ′,WH are random, honestly-generated
encoding of x′i, so the average-case relaxed leakage-resilience property of the LRCC guarantees that
SD (H, Ideal) ≤ ε.

The claim now follows from the triangle inequality.

Remark on Witness-Indistinguishability Against Adaptive Verifiers. Lemma 7.28
only shows witness-indistinguishability against (possibly malicious) non-adaptive verifiers. As
in [IWY16], we can combine witness-indistinguishability against non-adaptive verifiers with a result
of [CDD+01] to show that Construction 7.24 is in fact witness-indistinguishbale against adaptive
verifiers. (The error increases by roughly `2q

∗
, where ` is the proof length, but similar to [IWY16]

by setting the error of the original WI-PCPP scheme to be sufficiently small, we can obtain a
negligibly small error despite this security loss.)

Remark on Efficient Simulation. The simulator Sim of Construction 7.26 is inefficient be-
cause it emulates the simulator Simin of the average-case LRCC, which is inefficient. However,
Remark 7.21 guarantees that the emulation of Simin is efficient when the simulator is given a w′

such that (x,w′) ∈ RL. Consequently, the simulation is efficient if, given a subset {xi}i∈I of bits
in an x ∈ LRL

, one can find in polynomial time (x′, w′) ∈ RL such that x′i = xi for every i ∈ I.

Remark on the Assumptions Used in the WI-PCPP Construction. Our WI-PCPP
construction (Construction 7.24) is based on a standard PCPP for languages in P (which is
used to prove closeness to the languages L0

E, L
1
E), a PCPP for 3SAT with complexity (L, q∗), an

average-case LRCC with respect to some encoding scheme E that resists leakage from L, and
an encoding scheme E that has “good” (e.g., constant) relative distance and resists leakage from
L ◦ Shallow

(
O (s · n̂ (1, t, tin)) , 3, O

(
s · n̂2 (1, t, tin)

))
for some s = poly (n). If we take L = AC0 [⊕]

then all of the building blocks, except the encoding scheme E, are known (given such an encoding
scheme, an average-case LRCC against L-leakage exists by Lemma 7.20). Thus, we have reduced
the task of constructing a WI-PCPP with a non-adaptive verifier to the task of constructing the
encoding scheme E.

45

Acknowledgements

The author is extremely grateful to Yuval Ishai and Yael Kalai for endless useful discussions and
insightful comments throughout the different stages of this work.

This work was supported in part by ISF grants 1861/16, 1399/17 and 1709/14, AFOSR Award
FA9550-17-1-0069, ERC starting grant 259426, ,ERC grant 742754, and BSF grants 2012378 and
2012366.

References

[ADF16] Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit compilers
with O(1/n log(n)) leakage rate. In Advances in Cryptology - EUROCRYPT 2016 -
35th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, pages 586–615,
2016.

[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and hardness of approximation problems. In 33rd Annual Symposium
on Foundations of Computer Science, Pittsburgh, Pennsylvania, USA, 24-27 October
1992, pages 14–23, 1992.

[ARW17] Amir Abboud, Aviad Rubinstein, and R. Ryan Williams. Distributed PCP theorems
for hardness of approximation in P. In 58th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages
25–36, 2017.

[AS92] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; A new charac-
terization of NP. In 33rd Annual Symposium on Foundations of Computer Science,
Pittsburgh, Pennsylvania, USA, 24-27 October 1992, pages 2–13, 1992.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteri-
zation of NP. J. ACM, 45(1):70–122, 1998.

[BBC+17] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan
Hamilis, Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and
Madars Virza. Computational integrity with a public random string from quasi-
linear PCPs. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part III, pages 551–579, 2017.

[BBHR18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon
interactive oracle proofs of proximity. In 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic,
pages 14:1–14:17, 2018.

[BBHR18b] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, trans-
parent, and post-quantum secure computational integrity. IACR Cryptology ePrint
Archive, 2018:46, 2018.

46

[BCF+17] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Ri-
abzev, and Nicholas Spooner. Zero knowledge protocols from succinct constraint
detection. In Theory of Cryptography - 15th International Conference, TCC 2017,
Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part II, pages 172–206,
2017.

[BCG+11] Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman Kalai, and
Guy N. Rothblum. Program obfuscation with leaky hardware. In Advances in Cryp-
tology - ASIACRYPT 2011 - 17th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Seoul, South Korea, December 4-8,
2011. Proceedings, pages 722–739, 2011.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. Quasi-linear size
zero knowledge from linear-algebraic PCPs. In Theory of Cryptography - 13th Interna-
tional Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings,
Part II, pages 33–64, 2016.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
In Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing,
China, October 31 - November 3, 2016, Proceedings, Part II, pages 31–60, 2016.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 21–31,
1991.

[BGH+04] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of proximity, shorter PCPs and applications to coding. In Proceedings of
the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June
13-16, 2004, pages 1–10, 2004.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Advances in
Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001, Proceedings, pages 1–18, 2001.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM
J. Comput., 38(2):551–607, 2008.

[CC06] Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and secure
multi-party computations over small fields. In Advances in Cryptology - CRYPTO
2006, 26th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2006, Proceedings, pages 521–536, 2006.

[CDD+01] Ran Canetti, Ivan Damg̊ard, Stefan Dziembowski, Yuval Ishai, and Tal Malkin. On
adaptive vs. non-adaptive security of multiparty protocols. In Advances in Cryptology
- EUROCRYPT 2001, International Conference on the Theory and Application of
Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding, pages 262–
279, 2001.

47

[DF12] Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without compu-
tational assumptions. In Theory of Cryptography - 9th Theory of Cryptography Con-
ference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, pages
230–247, 2012.

[Din06] Irit Dinur. The PCP theorem by gap amplification. In Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages
241–250, 2006.

[DPS12] Yvo Desmedt, Josef Pieprzyk, and Ron Steinfeld. Active security in multiparty com-
putation over black-box groups. In Security and Cryptography for Networks - 8th
International Conference, SCN 2012, Amalfi, Italy, September 5-7, 2012. Proceedings,
pages 503–521, 2012.

[FRR+10] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan.
Protecting circuits from leakage: the computationally-bounded and noisy cases. In Ad-
vances in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Monaco / French Riviera,
May 30 - June 3, 2010. Proceedings, pages 135–156, 2010.

[GIM+16] Vipul Goyal, Yuval Ishai, Hemanta K. Maji, Amit Sahai, and Alexander A. Sherstov.
Bounded-communication leakage resilience via parity-resilient circuits. In IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October
2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 1–10, 2016.

[GIW17] Daniel Genkin, Yuval Ishai, and Mor Weiss. How to construct a leakage-resilient
(stateless) trusted party. In Theory of Cryptography - 15th International Conference,
TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part II, pages
209–244, 2017.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA,
pages 291–304, 1985.

[GR10] Shafi Goldwasser and Guy N. Rothblum. Securing computation against continuous
leakage. In Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, pages 59–79, 2010.

[GR12] Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage.
In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012,
New Brunswick, NJ, USA, October 20-23, 2012, pages 31–40, 2012.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing hardware
against probing attacks. In Advances in Cryptology - CRYPTO 2003, 23rd Annual
International Cryptology Conference, Santa Barbara, California, USA, August 17-21,
2003, Proceedings, pages 463–481, 2003.

[IW14] Yuval Ishai and Mor Weiss. Probabilistically checkable proofs of proximity with zero-
knowledge. In Theory of Cryptography - 11th Theory of Cryptography Conference,
TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, pages 121–145,
2014.

48

[IWY15] Yuval Ishai, Mor Weiss, and Guang Yang. Making the best of a leaky situation:
Zero-knowledge PCPs from leakage-resilient circuits. IACR Cryptology ePrint Archive,
2015:1055, 2015.

[IWY16] Yuval Ishai, Mor Weiss, and Guang Yang. Making the best of a leaky situation: Zero-
knowledge PCPs from leakage-resilient circuits. In Theory of Cryptography - 13th Inter-
national Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings,
Part II, pages 3–32, 2016. Full version available at http://eprint.iacr.org/2015/1055.

[JV10] Ali Juma and Yevgeniy Vahlis. Protecting cryptographic keys against continual leak-
age. In Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, pages 41–58, 2010.

[KPT97] Joe Kilian, Erez Petrank, and Gábor Tardos. Probabilistically checkable proofs with
zero knowledge. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the
Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 496–505, 1997.

[Mie08] Thilo Mie. Polylogarithmic two-round argument systems. J. Mathematical Cryptology,
2(4):343–363, 2008.

[Mil14] Eric Miles. Iterated group products and leakage resilience against NC1. In Innovations
in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014,
pages 261–268, 2014.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended ab-
stract). In Theory of Cryptography, First Theory of Cryptography Conference, TCC
2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings, pages 278–296, 2004.

[MV13] Eric Miles and Emanuele Viola. Shielding circuits with groups. In Symposium on
Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013,
pages 251–260, 2013.

[Rot12] Guy N. Rothblum. How to compute under AC0 leakage without secure hardware. In
Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2012. Proceedings, pages 552–569, 2012.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 49–62, 2016.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

49

	Introduction
	Our Contributions
	ZK-PCPs from Leakage-Resilience
	Towards ZK-PCPs with efficient simulation: Going beyond IshaiWY16
	Towards Going Beyond AC0[]-Leakage

	Towards WI-PCPs of Proximity from LRCCs
	On the Limits of the ZK-PCP of KilianPT97

	Preliminaries
	Leakage-Resilient Circuit Compilers
	Gadget-Based Leakage-Resilient Circuit Compilers
	Zero-Knowledge and Witness-Indistinguishable Probabilistically Checkable Proofs

	Extensions of the ISW-LRCC IshaiSW03
	Extensions of the ADF-LRCC AndrychowiczDF16
	Obstacles in Extending the GIMSS-LRCC GoyalIMSS16 to Resist AC0[]-Leakage
	Extensions of the MV-LRCC MilesV13
	Non-Adaptively Verifiable WI-PCPs of Proximity
	Notations and Definitions.
	LRCCs with public inputs
	Average-Case LRCCs
	A PCPP for 3SAT based on AroraS92
	The WI-PCPP System

